NJERO"

The Magazine of the APPLE, KIM, PET and Other 5502 Systems

5555555555555555555555555555
55555555555555555555555555

NO 12
卯ay
ๆ979
$\$ 1.50$

APPLE HI-RES GRAPHICS: The Screen Machine by Softape

Open the manual and LOAD the cassette. Then get ready to explore the world of Programmable Characters' with the SCREEN MACHINE ${ }^{T M}$. You can now create new character sets - foreign alphabets, electronic symbols and even Hi-Res playing cards, or, use the standard upper and lower case ASCII character set.
The "SCREEN MACHINE" lets you redefine any keyboard character. Just create any symbol using a few easy key strokes and the "SCREEN MACHINE" will assign that symbol to the key of your choice. For example: create a symbol, an upside down " A " and assign it to the keyboard ' A ' key. Now every time you press the ' A ' key or when the Apple prints an ' A ' it will appear upside down. Any shape can be

The "SCREEN MACHINE" gives you the option of saving your character symbols to disk or tape for later use. There is no complicated 'patching' needed. The SCREEN MACHINE is transparent to your programs. Just print the new character with a basic print statement. The "SCREEN MACHINE" is very easy to use.
Included on the cassette are Apple Hi-Res routines in SOFTAPES prefix format. You can use both Apple's, routines and the SCREEN MACHINE to create microcomputing's best graphics.

Cassette, and Documentation, a complete package.
$\$ 19.95$

MICROGAMMON 1.0 Learn, practice and inhance your Backgammon ability with a true competitor

APPLE-LIS'NER Voice recognition Software. Create your own programs which 'listen' and understand 31 spoken words - English or Foreign. No hardware needed
$\$ 19.95$
APPLE TALKER Your Apple's voice. Create programs which talk to you in English or Spanish or any language.
$\$ 15.95$
JUPITER EXPRESS Command your ship thru the hazards of the Asteroid belt between Mars and Jupiter
$\$ 9.95$
FORTE' A music language, written like basic, you use line numbers for your notes. You can trace line numbers or notes. You can even print the words of any song. Save your song to your Disk . \$19.95 FORTH $][$ Is the creation of $\mathbf{W m}$. Graves. This language gives you faster execution of programs than basic and is easier to program than machine language. Our 100 page manual will teach you everything you will need. FORTH][comes complete with demo programs on one Apple diskette
$\$ 49.95$
WHERE TO GET IT: Look for the SOFTAPE Software display in your local computer store. Apple dealers throughout the United States, Canada, South America, Europe and Australia carry the SOFTAPE Software line of quality products.
If your local dealer is sold out of SOFTAPE Software you can order it direct from us by check or Visa/Master Charge. If you have any questions please call us at:

VISA

1-213-985-5763

Or mail your order to the address below. We'll add your name to our mailing list for free literature and announcements of new products.
SOFTAPE

BRIGHT PEN What is the difference between a light and a Bright Pen? Intelligent Software and extensive documentation.
$\$ 34.95$

มコフロดอ

STAFF
Editor／Publisher Robert M．Tripp
ISSUE NUMBER TWELVE
Business Manager
Donna M．Tripp

table of contents

Administrative Assistant Maggie Fisher
MICRO Interrupts 3
An AIM 65 User＇s Notes 5
by Joe Burnett
S－C Assembler II 9 by Chuck Carpenter
A PET Hex Dump Program 13 by Joseph Donato

Super HI－LO for the SYM－1 17 by John Gieryic

A 100 uS 16 Channel Analog to Digital Converter ．．． 25 by J．C．Williams

Real－Time Games on OSI 31 by David Morganstein
ASK the Doctor－Part IV－Good News／Bad News 35 by Robert M．Tripp
MICRO Software Catalog：VIII 37 by Mike Rowe

Inside the KIM TTY Service 39 by Ben Doutre
The Integer BASIC Token System in the Apple II 41 by Frank Kirschner
Programming the 6502：by Rodney Zaks 44 reviewed by John D．Hirsch

MICRO ${ }^{\text {m }}$ is published monthly by：
The COMPUTERIST ${ }^{\circ}$ ，Inc．
P．O．Box 3
So．Chelmsford，MA 01824
Controlled Circulation postage paid at：
Chelmsford，MA 01824
Publication Number：COTR 395770
Subscription in US：$\$ 12.00 / 12$ Issues Entire contents copyright－ 1979 by： The COMPUTERIST ${ }^{\text {® }}$ ，Inc．
Renumber Applesoft

ADVERTISER＇S INDEX

CAP Electronics
Connecticut microComputer
COMPAS Microsystems
Computer Components
Computer Forum
The computerist，Inc．
Excert，Inc．
H．Geller Computer Systems
Hudson Digital Electronics MICRO

33	Micro Fechnology Unlimited
2	Optimal Technology，Inc．
IBC	P．S．Software House
34	Plainsman Micro Systems
24	Programma International．
44	Progressive Software
4	RNB Enterprises
17	Seaweil Marketing
30	Softape
44	Softside Software
	Speakeasy Software

Plainsman Micro Systems . 40
Programma International B
Progressive Software 26
RNB Enterprises 16
Seawell Marketing 23
Softape
IF C
Softside Software 12
Speakeasy Software BC

LIAM SYSTEMS DE CmC
A complete systen of odules to let your computer listen
to the real world．

DAM SYSTEMS FRICE LIST

DAM SYSTEMS COWFONEnt：

AIMIGI－Analos Infut Module 168 －bit malos infuts－ 100 dicrosecond conversion time－ 3 state orifat－rearires ane 8－bit computer output port for conirol and one 8－bit computer inpul port for data．

AIM162－Analos Infut Module As above plus：sreater accuracy－sold plated contacts－ pilot lisht－suitch selectable start，enable and reads melarities，

FOWI－－Fower Moriule Supflies power for one Alnds wodule．

ICON－Inmut Connector
For compectios amalos inputs to the AIN16－ 20 pin card edste connector－solder exelets．

OCON－Outfut Cornector For comecting the AIM16 to a compler－ 20 pin cord edse connector－solder exelets．

MANMOLI ．．．Manifold Module Use in place of ICDN．Serew terwinal barrier strips for connecting joestidts，polentioneters，vollase sources；elc． Elimiates the need for soldering．Pluss into the AlH16．

ANAMAN1－Analos Manifold Module Use in place of ICOM．Connects BEN SYSTES SEGORS to the AIN16 without soldarins－sensor cables just plus in，Pluss into the AnH16 ar the MiNDOI．

SENSORS
$\$ 1.79 .00$

$\$ 249.00$
$\$ 1.4 .95$
\＄9．95
$\$ 9.95$
$\$ 59.95$
－

THA

THA
Sensors for tewerature，messure flow，hanidity，level， PH E ation etc，

COMFUTEF INTERFACES
For the PET，KIn，TRS－CO，elc．Ise in place of OCOM．
Eliainates the aeed for solderins or special construction．
PETMON－．FET Interface Module Gives two IEEE perts，one user mort and one Din STSTEMS intreface port．Sewes warr and torr on the PET＇s printed circuit boord，Also called the PETSANR．

KIMMOL－N゙IM Interface Module Gives one application connector porl and one MAM SYSIEAS interface port．

CAELE＂A＂－Interconnect Cables Conacts campler interface to AIM16，HMNDIS1，XPANBRL， etc．

CABLE A24－Interconnect Cable $\$ 19.95$ 24 iach cable with iaterface connector on one end and an cock eaviveleat on the other．

MANDIS1－Manual and Hisflas Module TEA Conacts betumen the Allitb and the computer iaterface． Allows amul or comenter control of the AINTG．Displass chamel namber and data
GFIB MOI－GFIE（IEEE－4日B）Interface TEA Allow the BM STSTEs maxles to be used with the PPIB bus instand of a comuter＇s olher $1 / 0$ poris．

RS232 MOI－RS232 Interface Module Allows the Dif SISTEs MruEs to be used with an RS－2 28 Allows the DAW SV：
port or tereinal．

XFANDR1－Exiander Module Allows up to 128 a－bit malos infuts（ 8 AIMit Hodules）to be connected to ane ssiten．

LAM SYGTEMS sets

AIM161 Starter Set Includes one Allishly one Poult one Icom and one ocon．

AIM162 Starter Set Includes one AIH162；ane POMI，one ICOM and one OCDN．

FETSET1：
Includes one PETHID，one CABLE A24，one AIMis1，ane POUI and one Mividit．

K゙IMSET1a

Includes one Krrigy ane CAELE A24，one AIM161，ome POM1 and one Mivionl．

NEXI IN THEX ISSUE

While this space is usually used to discuss the contents of the current issue, I would like to use it this month to talk about the exciting new changes coming up in the June 1979 issue of MICRO. These changes reflect our continuing effort to make MICRO even better than before.
The most significant change is that MICRO will be increased in size from the current 52 pages up to 68 pages. This is due to the continuing growth of both the articles submitted for publication and the increased interest in advertising in MICRO. The 16 page expansion will support growth in both of these areas.

The second most important change is that MICRO is going to be printed by a more sophisticated printing method. It will be printed on glossy stock which make for easier-to-read text, permits far superior halftones, and is slightly liahter so that mailing costs will remain about the same even though the size has increased.

One objection I have had to the current format of MICRO, an objection that has also been voiced by others, is that while the articles are the important part of MICRC, the overall magazine is a bit heavy or dry. To overcome this, some of the new space will be used for news, informal discussions, points-of-view, and so forth. I do not plan to publish "love-letters", but if you have something to say that may not merit an entire article - then write a short note. We will make room for these less formal presentations.

The overall appearance of MICRO will be improved - from the two color cover to the interior layout. We have analysed a number of other magazines and tried to "lift" those features that made them interesting and readable. I know that there are some "purists" in the audience who will object to any changes in the magazine, but I feel that most readers will appreciate the improvements. Some of the current features that we will definitely maintain are: the three-hole punch, the organization of each article into contiguous pages generally unbroken by ads, the protective mailing cover, and, of course, the editorial direction toward useful features and articles over games and "blue-sky" speculation.

With the increase in size and production cost, there will be an increase in price - but not that much. The retail price will increase to $\$ 2.00$, but the subscription will only increase to $\$ 1.25$ or $\$ 15.00$ per year in the US. This is the first increase in price since we began 12 issues aoo. Subscriptions will be accepted at the old rate until June l, 1979 - so you may want to renew ahead (but only for one year).

MICREBES

EKIM or MAXI-KIM, MICRC 11:20
17D1 BC AD RCS START should have been 17D1 BO B4 BCS GETK
Robert A. Stein, Jr. reports that the table of memory size changes in "A CASSETTE OPERATING SYSTEM FOR THE APPLE II", MICRO 11:21 has some errors. The corrected table appears below:

If using CASSOS in other than a 16 K machine change location $\$ 0358$ as follows:
$\begin{array}{llllll}1 F-8 K & 2 F-12 K & 3 F-16 K & 4 F-20 K & 5 F-24 K & 7 F-32 K \\ 8 F-36 K & B F-48 K\end{array}$

CLUB ANNOUNCEMENTS

APPLESEED
c/o The Computer Shop 6812 San Pedro
San Antonio, TX 78216
(No information was included on their current meeting dates, nor was there a phone number given. This info would make the announcement much more useful !!)

An attempt is being made to organize an Apple group in New Hampshire. If you are interested, please contact:

Steve Adams

Governor Weare Apts. Bldg. 1, Apt. 2
Seabrook, NH 03874
603/474-2230

ACG of NJ 6502/6800 User Group

Lew Edwards reports that the group is very active. "Meetings on 4th Friday at Union County Technical Institute have all kinds of expanded KIM's, PET's, an Apple group as well as AIM's and SYM's starting to show up. It's a wonderful way for beginners to get help from others in solving problems, getting their systems up and running, etc. Has really been taking off the last 6-7 months."

ABACUS (Apple Bay Area Computer Users Society) Hayward BYTE Shop 1122 B Street Hayward, CA
David R. Wilkerson, Secretary writes: "We have an active membership of 40 , and we have developed a club library of $200+$ programs. Currently we are negotiating to trade libraries with several other clubs." For more info call:

Ed Avelar, President
415/5é3-2431

Northwest Suburban Apple II Users Group

"Serving Apple II users in the Northwest Suburban Chicago area, we provide a forum for the interchange of knowledge, problems and application of the Apple II computer. Meetings are held the first Saturday of each month at the Palatine, Illinois Park District facility."

For more information please contact:
Ken Rose
650 Pompano Lane
Palatine, IL 60067
312/359-6723

ATTENTION ALL 6502 CLUBS

MICRO will be happy to donate a free six month subscription to any legitimate 6502 oriented club or user group. There are only two requirements for this offer:

1. A copy of the club/group mailing list must be sent to MICRO. This both shows that you are a real club and lets MICR send a flyer to your members describing our publication.
2. Regular notification of meetings and events must be provided for this column. This will help us inform more potential members about your organization.

Joe Burnett
16492 E. Tennessee Avenue
Aurora, CO 80012

The AIM 65 Microcomputer, made by Rockwell, is one of the newest, most versatile home computers available today. At the time of this writing (January 1979), it sells for $\$ 375$. For this you get the complete computer, with a 20 character alphanumeric display, full size alphanumeric keyboard, a printer which uses inexpensive calculator type paper, 1 K of RAM and 8 K ROMresident programming. Options include the ability to add 3 K more memory, a 4 K assembler, and an 8 K Basic interpreter, all on-board, simply by purchasing them and plugging them in. An "application" connector and an "expansion" connector accept standard 44 pin edge connectors, and allow the control and I/O of two cassette units and a teletype, as well as off-board additional memory. On-board programming (ROM-resident) gives you the ability to display memory in either hex or mnemonic, alter memory, edit programming, turn the printer on and off, display registers, and enter any of the many resident subroutines. With cassette units connected, you can read or write to either one, and set up the AIM 65 to handle KIM-1 format (X1 or X3) or the AIM 65 format software. The AIM 65 will file and search cassette tapes, and the front panel alphanumeric display lets you know the status of the operation in progress as well as the block of data being read or written. Three keys on the keyboard (F1, F2, and F3) enable user defined functions through programmed jump instructions, and are a nice feature. Physically, the computer circuit board itself is ten inches deep by twelve inches wide, and the keyboard (which attaches through a supplied ribbon cable) is four inches deep by twelve inches wide. Included with the computer is a roll of paper for the printer, "feet" for the computer circuit board and the keyboard circuit, a User's Guide manual, an R6500 Programming manual, a System Hardware manual, a Programming Reference Card, an AIM 65 Summary Card, and a large schematic diagram, as well as the warranty card (don't forget to mail this in).

Software Compatibility

As with any new product, there are some problems. One is with the KIM-1 software. The KIM-1 is a very basic computer, and the AIM 65 is sophisticated by comparison. An example of the problem with the software is the KIM-1 "PLEASE" program. "PLEASE" loads data into memory locations which either are dedicated for use by the AIM 65, or are not present in the AIM 65. Consequently, although the AIM 65 can be initialized to accept KIM-1 programming, check the listing before you try to do it. It'll save you a lot of time and frustration. The AIM 65 User's Cuide Manual includes a detailed memory map which you can use to determine (from a program listing) whether or not the program you're trying to load will in fact load as advertised.

Some Cassette Control Problems

A second problem is with the cassette unit control circuitry. There are actually two circuits in the AIM 65 for each cassette unit, and although Rockwell made an attempt to cover all eventualities, they didn't succeed. The first circuit makes use of an integrated circuit relay driver, which puts a low (ground) at the cassette
control output pin of the "application" connector when the computer toggles the cassette unit "on". The second circuit is a transistor switch which is biased on when the computer toggles the cassette unit "on". The problem arises in that not all cassette units use a positive supply voltage with the negative line common (connected to the cassette unit frame). General Electric, for example, typically connects the positive side of the battery (or AC adapter) to the cassette unit frame, and uses negative voltage for the motor and electronic circuitry. At first glance, this doesn't look like a problem; after all, you only need to supply a closure to the remote switch line, and the cassette unit will run, right? Well, not quite. 'If you connect your GE cassette unit to the relay driver output pin, and the computer control has the cassette unit toggled "off", the cassette unit won't shut off. This is because you've put a negative voltage (from the cassette unit) at a point which has a nearly equal positive voltage (from the AIM 65), and the result is close enough to zero volts that the cassette unit motor runs even though the computer indicated that an "off" condition exists. Okay, sc what about the transistor switch? Figure 9-4 of the User's Guide manual shows how to connect the wires. And the cassette unit won't run. At this point you're most likely very annoyed and confused (I know I was). The reason that the computer won't control the cassette unit is that (1) figure 9-4 of the User's Guide Manual is in error; the positive voltage from the cassette unit battery should go to pin " F ", and the motor line should go to pin " E ", of the "application" connector; and (2) the transistor does not have the voltages necessary to make it work, even after the wires are properly connected. If you look at the schematic diagram, you'll see that the transistor switch in the computer gets its operating voltage from the circuit it's controlling. To make it work, the transistor must have the proper bias (voltage between base and omitter), and to get this a common ground must exist between the computer power supply and the cassette unit power supply. It would seem that all that would be necessary would be to connect the emitter of the transistor (pin "F" of the "application" connector) to ground. Now the cassette unit will run and stop in response to computer control-until you plug in the ear and/or mic lines. When you do this, and the transistor turns on, you create a short circuit across the battery (or AC adapter) of the cassette unit. The reason is that when you wired up the ear/n, 1 c lines, you connected one side to ground on the 44 pin edge connector, and now the current finds a path through the cassette electronic circuitry, and everything stops. Under normal conditions, the remote switch on the cassette unit microphone is isolated from everything, so no problem exists. When you make the return line to the remote switch and the ear/mic line return common, a short circuit occurs. So what do you do now? Simulate an isolated switch, similar to what the microphone has. A relay is the only way, if you're going to control the cassette unit with the computer. Since my AIM 65 is still in the warranty period, I have not modified it as I'd like to. However, once the warranty period expires, I'm going to install-two relays on the circuit board and use the transistor switches to control them. Then it won't matter what kind of motor control the cassette unit uses; I'll have the isolated switch action required to control any cassette unit, regardless of the polarity of the voltages involved.

At the time of this writing, neither the Assembler nor the BASIC interpreter is available from my distributor. This means that any programming I do has to be done using mnemonic codes. Although the documentation in the User's Guide is very good, the sample programs shown appear to have been produced with the use of an Assembler. An example is on pages 7-82 and 7-83. This program is intended to display and print an assembled message, but the information on how to prepare the message for storage in memory is absent. So, if you input this program you'll be " all dressed up with nowhere to go". The program shown below will allow you to input a message, and then retrieve it, all with the "bare bones" (1K RAM) AIM 65. How you use this is up to you. It could be just "for show", or you can modify it as desired and
include it in more complex routines involving user interaction with the computer. This program does feature single key access (user function key F1, F2, or F3). Key F1 allows you to write to memory; key F2 retrieves the entire message; and key F3 retrieves the message a line at a time, with the space bar being used to advance the display to the next line of the message. The maximum length of the message is $131 / 2$ lines. An asterisk is typed at the end of the message when it is written to memory, which takes the computer out of the loop in all of the modes.
I hope the information in this article helps you avoid some of the problems and frustrations l've experienced. Enjoy your AIM 65. I'm having a lot of fun with mine, and I'm still learning what it's capabilities are.

WRITE TO MEMORY PROGRAM

JOE BURNETT

WITH MODS BY MIKE ROWE

APRIL 1979

0000 ORG \$0000

AIM SUBROUTINES

0000	CRCK	$*$	\$EA24	DUMP PRINT BUFFER
0000	CRLF	$*$	$\$ E 9 F 0$	CARRIACE RETURN/LINE FEED
0000	INALL	$*$	$\$ E 993$	INPUT FROM ANY DEVICE
0000	OUTALL	$*$	$\$ E 9 B C$	OUTPUT TO ANY DEVICE

ASCII CHARACTER

0000
0000

SPACE	$*$	$\$ 0020$	SPACE CHARACTER
ASTER	$*$	$\$ 002 A$	ASTERISK CHARACTER

WRITE MESSAGE TO MEMCRY

READ MESSAGE ONE LINE AT A TIME

| 0058 | 20 FO E9 | EXIT | JSR | CRLF | OUTPUT TO BLANK LINES |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 005B 20 FO E9 | | JSR | CRLF | | |
| OO5E 00 | | | BRK | | THEN EXIT TO MONITOR |

USER FUNCTION DEFINITIONS

APPLE I® ${ }^{\circledR}$ PROFESSIONAL

PIE TEXT EDITOR

PIE (PROGRAMMA IMPROVED EDITOR) is a two-dimensional cursor-based editor designed specifically for use with memorymapped and cursor-based CRT's. It is totally different from the usual line-based editors, which ware originally dasigned for Teletypes. The keys of the system input keyboard are assigned specific PIE Editor function commands. Some of the features included in the PIE system are: Blinking Cursor; Cursor movement up, down, right, left, plus tabs; Character insert and delete; String search forwards and backwards; Page scrolling; GOTO line number, plus top or bottom of file; Line insert and delete anywhere on screen;
Move and copy (single and multiple lines);
Append and clear to end of line; Efficient memory usage. The following commands are available in the PIE Text Editor and each
is executed by dapressing the systems argument key simulataneously with the command key desired:
[LEFT] Move cursor one position to the left
[RGHT] Move cursor one position to the right
[UP]
Nove cursor up one line
[BHOM] Home cursor in lower left left hand corner
[HOME] Home cursor in upper left hand corner
[-PAG] Move up (toward top of file)
[+PAG] Move down (toward bottom
of file) one "page
[LTAB] Move cursor left one
horizontal tab
Go to top of file (line 1)
BOT] GOTO] Go to line ' n
Go to bottom of file
(last line +1)
[-SCH] Search backwards (up) into file for the next occurence of file for the next occurence of
the string specified in the last the string specifie
[ARG]t[-SCH] Search backwards for string ' t '
[+SCH] Search forwards (down) into the file for the next occurence of the string specified in the last search command
[ARG] $t+S C H$] Search forward for string ' t
[APP] Append -move cursor to last character of line +1
[INS] Insart a blank line beforere the current line
[ARG]n[INS] Insert ' n ' blank lines before the current line
[DEL] Delete the current line, saving it in the "push" buffer
[ARG]n[DEL] Delete ' n ' lines and save the first 20 in the push buffe
as it is blank
[PUSH] $\begin{aligned} & \text { Save current line in "push" } \\ & \text { buffer }\end{aligned}$
[ARG]n[PUSH] Save ' n 'lines in the "push" buffer
[POP] Copv the contents of the "push"
[CINS] buffer before the current line
[CINS] Enable character insert mode
[CINS] [CINS] Turn off character insert mode [BS] Backspace
[GOB] Gobble - delete the current character and pull remainder of characters to right of cursor left one position
[EXIT] Scroll all text off the screen and
exit the edito
[ARG] [HOME] Home Line - scroll up to move current line to top of screen
[APP] [APP] Left justify cursor on current line
Clear to end of line
[ARG][GOB] Clear to end of line
Apple PIE Cassette 16K $\mathbf{\$ 1 9 . 9 5}$
TRS-80PIE Cassette 16K 19.95
Apple PIE Disk 32K 24.95

6502FORTH . Z-80FORTH 6800 FORTH

FORTH is a unique threaded language that is ideally suited for systems and applications programming on a micro-processor systam. The user may have the interactive FORTH Compiler/Interpreter system running standalone in 8 K to $\mathbf{1 2 K}$ bytes of RAM. The system also offers a built-in incremental assembler and text editor. Since the FORTH language is vocabulary based, the user may tailor the system to resemble the needs and structure of any specific application. Programming in FORTH consists of defining new words, which draw upon the existing vocabulary, and which in turn may be used to define even more complex applications. Reverse Polish Notation end LIFO stacks are used in the FORTH system to process arithmetic expressions. Programs written in FORTH are compact and very fast.

SYSTEM FEATURES \& FACILITIES
Standard Vocabulary with 200 words
Incremental Assembler
Structured Programming Constructs
Text Editor
Block $1 / 0$ Buffers
Cassette Based System
User:Defined Stacks
Variable Length Stacks
User Defined Dictionary
Logical Dictionary Limit
Error Detection
Buffered Input

CONFIGURATIONS

Apple FORTH Cassette 16K	$\$ 34.95$
AppleFORTH Disk 32 K	49.95
PetFORTH Cassette 16K	34.95
TRS-80FORTH Cassette 16K	34.95
SWTPCFORTH Cassette 16K	34.95

SOFTWARE

ASM/65 EDITOR ASSEMBLER

ASM/65 is a powerful, 2 pass disk-based assembler for the Apple II Computer Svstem. It is a compatible subset of the FORTRAN cross assemblers which are available for the 6500 family of micro-processors. ASM/65 features many powerful capabilities, which are under direct control of the user. The PIE Text Editor co-resides with the ASM/65 Assembler to form a comprehensive development tool for the assembler language programmer. Following are some of the features available in the ASM/65 Editor Assembler.

PIE Text Editor Command Repetoire Disk Based System
Decimal, Hexadecimal, Octal, \& Binary Constants
ASCII Literal Constants
One to Six character long symbols
Location counter addressing "*"
Addition \& Subtraction Operators in Expressions
High-Byte Selection Operator
Low-Byte Selection Operator
Source statements of the form: [label] [opcode] [operand] [comment]
56 valid machine instruction mnemonics
All valid addressing modes
Equate Directive
BYTE Directive to initialize memory locations
WORD Directive to initialize 16 -bit words
PAGE Directive to control source listing
SKIP Directive to control source listing
OPT Directive to set select options
LINK Directive to chain multiple text files Comments
Source listing with object code and source statements
Sorted symbol table listing

CONFIGURATION

Apple II 48K/Disk
$\$ 69.95$

LISA INTERACTIVE ASSEMBLER

LISA is a totally new concept in assembly language programming. Whereas all other assemblers use a separate or co-resident text editor to enter the assembly language program and then an assembier to assemble the source code, LISA is fully interactive and performs syntax/addressing mode checks as the source code is entered in. This is similar in operation to the Apple II Integer BASIC Interpreter. All error messages that are displayed are in plain, easy to understand English, and not simply an Error Code. Commands in LISA are structured as close as possible to those in BASIC. Commands that are included are: LIST, DELETE, INSERT, PR \#n, IN \#n, SAVE, LOAD. APPEND, ASM, and a special user-defineable key envisioned for use with "dumb" peripherals. LISA is DISK 11 based and will assemble programs with a textfile too long to fit into the Apple memory. Likewise, the code generated can also be stored on the Disk, hence freeing up memory for even larger source programs. Despite these Disk features, LISA is very fast; in fact LISA is faster than most other commercially available assemblers tor the Apple 11 . Not only is LISA faster, but also, due to code compression techniques used LISA requires less memory space for the text file. A full source listing containing the object and source code are produced by LISA, in addition to the symbol table
Apple II 32K/Disk \$34.95

S-C ASSEMBLER II
 Super Apple II Assembler

Chuck Carpenter
2228 Montclair Pl.
Carrollton, TX 75006

I've had the good fortune to get an advance copy of an excellent assembler for the Apple II. The assembler was written by Bob Sander-Cederlof and has many desireable features. Bob has used sweet 16 and several routines from the monitor and integar BASIC (it doesn't run with the Applesoft ROM on). The result is a compact co-resident two-pass assembler. A summary of assembler commands and data is listed in Table 1.

Here are a few of the assembler features:

- Format compatible with Apple mini-assembler
- Complete text editing using standard Apple screen and line editing features.
- Save and Load as in integar BASIC
- Psuedo op codes
- Text for REMs following the line no.
- Tabs to the opcode, operand and comment field using (CTRL) I
- Symbol table
- Listing, fast or slow
- Stop and start a LIST or ASM at any time
- Access Apple monitor from the assembler using \$
- Run programs from the assembler

The S-C ASSEMBLER II includes many other features. Among these are:

- Line renumbering starting at 1000 by 10 's
- Printer driver routine - his or yours (or mine for that matter).
- Pagination of printed output
- Program location and relocation
- Can be used to renumber BASIC programs (except branches)
- Operates within DOS (see Table 2)
- Runs on an 8 K machine

I have included a couple of examples of the S-C ASSEMBLER if features in Figure 1 and 2 . Figure 1 is a functional routine. Figure 2 is merely for illustration of the .DA feature. Most of the assembler capability is illustrated in Figure 1. This routine, which compares 2 byte data, can be used for many applications such as extended loop counters. The example also includes ASCII strings using the pseudo op code. AS.

A jump to the user exit at $\$ 3 F 8$ was used to enter the data. This also takes advantage of the (CTRL) Y feature of the Apple monitor.

By calling the print routine with PRT, a hard copy of a listing or of assembled output is obtained. The printer driver routine is output from the game paddle connector. This is a TTL level serial signal. Typing SLO(W) or FAS(T) stops the printer output. Also, SLO(W) will provide a slow listing of your program. You can stop and start the listing with the space bar and, escape back to the assembler with a (RETURN). FAS(T) cancels SLO(W) returning to normal screen speed. (See Slow List, MICRO \#5 page 21.)

For text editing, you can insert a line between other lines and list any single line or combination of lines. This allows character editing or line editing using Apple ESCAPE functions ((ESCAPE)D,C,B). Also you can DEL(ETE) any line or combination of lines.

An asterisk (*) in the first column of the label field allows that line to be a comment or blank line. Very useful for commenting a program. I used short comments in my programs; I only have 48 columns. Actually the comment can be any length (up to 100 characters or so). An asterisk used in the operand field means current location. You can add or subtract labeis, hex and decimal values from the current location. Each of these can be added or subtracted, to or from, each other. Here are some examples:

```
1000 LABL LDA *-* CURRENT-CURRENT
1010 LAB2 LDA LABL-LABL
1020 LAB3 LDA *-LABL
1030 LAB4 LDA LABL+1234
1040 LAB5 LDA $1234-LABL
1050 LAB6 LDA $ABCD-5678
1060 *
1070 * EXAMPLES OF ADDITION & SUBTRACTION OF
1080 * CURRENT VALUE, LABELS, DECIMAL AND
1090 * HEX VALUES FROM EACH OTHER.
1100 *
```

Illustration of the .DA feature is shown in Figure 2. The intent here is to show data in a single or 2 byte location. Once the data value has been assigned with the .DA code, it can be manipulated with another feature. This feature is shown as a / (slant line) and \# (pound) in the first column of the operand field. Here's what's happening:

LDA $/ \mathrm{LABL}=$ HIBYTE $=\div 256$
LDA \#LABL $=$ LOBYTE $=$ MOD256
As you can see from this and the previous examples, these features provide a very powerful assembler capability.

Before I obtained this assembler I could never get very enthusiastic about extensive machine or assembly language programming. Now, with this assembler, this coding is as easy as BASIC. You can get a copy for your Apple II from:

S-C SOFTWARE

P.O. Box 5537

Richardson, TX 75080
Price - $\$ 25.00$
I think you will enjoy it: having the efficiency of machine language programs developed with the ease of BASIC. The combination of compact programs with interactive capability makes personal computing even more enjoyable.

Load:	$* 1000.1$ CFFR
Run:	$* 1000 \mathrm{C}$ Hard Entry
or:	${ }^{*} 1003 \mathrm{C}$ Soft Entry

Pseudo ops:
label . OR expr label. EQ expr label. DA expr label . HS xxxx...x label. AS daaaa...ad EN
origin (optional label)
equate
data (optional label)
hex string
ascii string (d is any delimiter) end

Commands:

LOAD	load program from tape
SAVE	save program to tape
LIST	list entire program
LIST line\#	list selected line
LIST line\#, line\#	list range of lines
DELETE line\#	delete selected line
DELETE line\#,line\#	delete range of lines
RENUMBER	renumbers all lines
NEW	erase program
SLOW	program slow list
FAST	program fast list
PRT	printer driver \$1B77-1BFF
ASM	assemble program
RUN expr	execute starting at expr
APPEND	add program from tape to one in memory

Table 1
S-C Assembler II Summary Notes

Instruction Steps:

1. Bring up DOS per instruction manual
2. Reset to monitor (*)
3. Load assembler from tape
4. Return to DOS using \$3DOC
5. BSAVE Assembler
6. LOCK Assembler
7. Call 4096 Jumps to Assembler
8. \$3DOG Jumps to DOS soft entry but...

At this point the DOS is clobbered. Any further use of DOS requires a reboot. It is very handy though to have the speed of loading the assembler from the disc.

Table 2
S-C Assembler II with Apple II DOS

GTMEOL THELE
H. Ex

IEC GETE
Figure 2
：HEM
G－EGEEMELEF ］

1060 ：ETE RGEMELEF I I EMFHFLE 1016 ： $16 E \mathrm{O}$ ：COMFFFES HES UFLUES 1010 ＊ HHI IHIIOATES WHIOH 1E46＊IS GFEFTEF TOF EDURL！． 1 ETE
1060－OF $\$$ SOU 1670 it： 1EGT + ．OF IEFFULT IS 丰EGU 1694 110 ELOT ．EG FFIEI

E6E FE 50 060 E6 59
 GEG－EI ED EE EGT：－EI

ESGI－ FE	E：
ESTF－ 5	3 E
W11－ FS $^{\text {S }}$	3 I
Q19－E5	3F
ESIE EV	E6
ES17－FE	E16
619－	EE 45
E10－60	
E315－． F 0	
ESIF－40	E8 0
Q6e－ 6	E6
EGe4－ 5	EI FII
ESET－ 0	
CSE－EG	60 Ex
ECEE－101	F
ESEI－40：	EII FII

111 LES ． HE ＂$11 E 0$ ． HE EI1180 GFEG AS $\%: \%$
1140 ．HE EI

$1160 \% \mathrm{H}$-EQ \ddagger EI
117E 'H E EG FE
1160 HH . EO GEF
1196 ETFF LIA \%
1こG OHF ML
1E16 LIN :H
1EEO SEO HH
1EGE ENS TST1 $\therefore \therefore=Y$
1E4 LIM \#LESELEES
1ESE SER FFHT
1EOG FTS
1ETE TST1 LIH \#GFEG-LESS
1E00 JTF FFNT
1EGE FRT1 OF:H \#\#ES HORMFL DUT
13 ECT ISE EOUT
$1310 \quad$ It
15EG FFNT LIAF LESS'
13G EFL FRT1

15家 4

13TE * IGEF EXIT IG \&FE.
180 at
1094 : IARTA. IATA ICTELIY
146410
1410 - OF \ddagger SFE
14 ES MF STHF :
EMFMFLE FIHY
:

$x>=\gamma$
GHEOL THELE

GIT	FIETI	LES	E3010	CREE	696e
x	E60：	SH	E16：3I	＇r＇	E6TE
＂H	616F	STFE：	E13611	TETi	E1II
FFTT	Cose	FFETT	6SEs		

Figure 1

softside sot
 305 Riverside Drive, New York, N.Y. 10025
 thet program.

1

Quadruple your PET's graphic resolution. Do not be stuck with the PET's cumbersome 25X40 1000 point display. With the Graphics Pac you can individually control 4000 points on screen. It's great for graphing, plotting, and gaming. The Pac is a set of three programs with full documentation. PLOT places coordinate 0,0 in the screen's upper left hand corner. Fcr more sophisticated applications the Pac includes GRAPH which plots point 0,0 , in the center of the screen allowing you to plot equations in all four quadrants. As a bonus a Hi Res Doodle game is included. All this on a high quality cassette for $\$ 9.95$

ASSEMBLER 2001
is a full featured assembler for your PET microcomputer that follows the standard 6502 set of machine language mnemonics. Now you can write machine code programs. Store your assembled programs, load them, run them, and even list your programs and various PET subroutines. Unlike other assemblers this is one program! You do not have to go through a three tape process to edit and run a program. Of course to make more space you can trim out the features you do not need. Assembler 2001 allows you to run through the USR of SYS commands. This valuable program is offered at $\$ 15.95$.

BIKE

An exciting new simulation that puts you in charge of a bicycle manufacturing empire. Juggle inflation, breakdowns, seasonal sales variations, inventory, workers, prices, machines, and ad campaigns to keep your enterprise in the black. Bike is dangerously addictive. Once you start a game you will not want to stop. To allow you to take short rest breaks, Bike lets you store the data from your game on a tape so you can continue where you left off next time you wish to play. Worth a million in fun, we'll offer BIKE at $\$ 9.95$.

PINBALL
your computer Bumpers chutes, guarantee a great game for all. $\$ 9.95$.

SUPER DOODLE
Dynamic usage of the PET's graphics features when combined with the fun of the number 1 arcade game equals an action packed video spectacle for

Give your PET a workout. This program really puts the PET's graphics to work. Super Doodle lets you use the screen of your PET like a sketch pad. Move a cursor in eight directions leaving a trail of any of the 256 charactrs the PET can produce. New features include an erase key that automatically remembers your last five moves, a return to center key, and clear control. Why waste any more paper, buy Super Doodle for onlv $\$ 9.95$.

DRIVING ACE
Non stop excitement with a fast moving, high paced version of your favorite video arcade racing games. Shift up! Shift Down! Watch your gas, and be careful on those hairpin turns. This dynamite tape has the two most common arcade racing games specially adapted to run on your PET computer. Driving Ace simulates an endless road packed with tight turns and gentle, but teasing, twists. Starting with fifty gallons of gas, how far can you go with a minimum of accidents? Grand Prix places you and your car on a crowded racing track. Race the clock and be careful steering around the fast but packed Grand Prix track. $\$ 9.95$

A PET HEX DUMP PROGRAM

Joseph Donato
193 Waltord Rd. E.
Sudbury, ONT., Canada

Have you PET owners ever wondered how it could be possible to look at your BASIC which resides in Read Only Memory (ROM)? To be able to look for routines entry points and other interesting codes in machine language?

This program will do just that. You can look at all memory locations in PET's BASIC which starts at 49152 decimal or COOO hexadecimal in memory. One is able for example to look at locations D71E through D890 where addition and subtraction routines are carried out, D8BF through D8FC where the log function is evaluated, D9E1 through DA73 where division is performed and many other locations where other routines are carried out.
A start for this program was provided by Mr. Herman's article of MICRO 7:47. Of course the same information was available in the Commodore Users Notes.

In any event I decided that the ultimate goal of the program would be to provide a memory dump of some sort in hexadecimal notation so that machine language instructions could easily be recognized.

The output of the program is formatted as a starting address followed by either 32 or 8 bytes of data per line, all in hexadecimal, depending on whether or not a printer is to be used. With the data bytes in hex notation it is very easy to correlate them with the 6502 microprocessor machine language instruction set.

The program listing has been thoroughly debugged and tested. Although the program was originally written for a PET with a Centronics printer, as I outlined in the REM's, the program will run on a "bare" PET with no problem.

The changes for a "bare" PET are as follows:

1. Omit line 10 .
2. Change line 542 to read: 542 IF Lく89 THEN 570
3. Omit all print statements and substitute instead the print format outlined in the REM's at lines 606 through 612. These print lines are to be placed at line $545,546,547,548$.
4. Notice that there is no comma or semicolon after the last print character. This is very important otherwise the format will be destroyed.

A considerable amount of time was spent on both versions of the program. No problems were encountered in running either version.

I hope that by following the machine language coding of the 6502 some of you will obtain a better understanding of PET's Basic 'inner workings'. Also some of you who have the T.I.M. monitor will be able to trace its subroutines and jumps to Basic. Perhaps it may inspire you in writing some machine language programs or routines.

I should add that if one wishes to look at different addresses other than the COOO (49152 decimal), all you need do is to change the starting address value " K " in line 240 . This must be in decimal notation.

I hope you get as much pleasure as I did 'sneaking a look' at PET's Basic.

1 REM *** A BASIC PET HEX DUMP ***
2 REM THIS PROGRAM WILL PEEK AT PET'S
3 REM MEMORY IN ROM STARTING AT A GIVEN ADDRESS 'K' (49152 DECIMAL) AND RETURN
4 REM THE CORRESPONDING DATA. ALL VALUES ARE CONVERTED TO HEXADECIMAL PRIOR TO
5 REM PRINTING. THE FORMAT IS: STARTING ADDRESS PLUS 32 OR 8 BYTES OF DATA,
6 REM PER LINE DEPENDING WHETHER OR NOT A PRINTER IS USED.
7 REM
8 REM THE COMMAND ON LINE 10 INITIALIZES THE PRINTER PORT. IT *MUST* BE OMITTED
REM IF A "BARE" PET IS USED.
10 OPEN 5,5:CMD 5
11 REM FOLLOWING IS A MACHINE LANGUAGE
12 REM ROUTINE WHICH RESIDES IN NUMBER 2 TAPE
13 REM BUFFER AREA. IT RETURNS THE CONTENTS OF THE CORRESPONDING MEMORY
14 REM LOCATIONS SPECIFIED BY 'K'.
15 POKE (1), 58
16 POKE (2), 3
17 POKE (826), 32
20 POKE (827), 167
30 POKE (828), 208
40 POKE (829), 166

50 POKE (830), 179
60 POKE (831), 164
70 POKE (832), 180
80 POKE (833), 134
90 POKE (834), 180
100 POKE (835), 132
120 POKE (836), 179
130 POKE (837), 162
140 POKE (838),00
150 POKE (839),161
160 POKE (840),179
170 POKE (841), 168
180 POKE (842), 169
190 POKE (843),00
200 POKE (844), 32
210 POKE (845), 120
$220 \operatorname{POKE}(846), 210$
230 POKE (847), 96
232 REM SET UP STORAGE AREA FOR ONE
233 REM LINE OF HEX VALUES TO BE PRINTED
235 DIM NI\$(40),NO\$(40)
236 REM INITIALIZE CHARACTER COUNTER
237 L=1
238 REM THE VALUE OF 'K' DETERMINES
239 REM THE STARTING ADDRESS.
240 FOR K=49152 TO 65536
241 I=K
250 A $=$ USR (K-65536)
255 REM LINES 270-530 CONSIST OF A SUBROUTINE TO CONVERT ALL VALUES FROM
256 REM DECIMAL TO HEXADECIMAL NOTATION
270 B\%=16
$280 \mathrm{D}=\mathrm{A}$
$390 \mathrm{H} \$=" 0123456789$ ABCDEF"
400 NO\$(L) =""
405 NI $\$(\mathrm{~L})=" "$
410 F \% $=\operatorname{LOG}(\mathrm{I}) / \operatorname{LOG}\left(\mathrm{Bi}^{\%}\right)$
411 REM BECAUSE THE DECIMAL TO HEX ROUTINE
412 REM RETURNS A SINGLE 'O' FOR VALUES
413 REM DF $A=0$, LINE 416 CONVERTS
414 REM ANY OF THESE ZERO VALUES TO
415 REM A DOUBLE HEX 'OO'.
416 IF $A=0$ THEN NO $(L)=" 00 ": G O T O 480$
418 G\% $=$ LOG (D)/LOG(B\%)
420 FOR J=G\% 「O O STEP -I
$430 \mathrm{X}=\mathrm{INT}\left(\mathrm{B} \%{ }^{\circ} \mathrm{J}\right)$
440 C\% $\%$ /X
445 REM LINE 455 INSERTS A LEADING ZERO
446 REM IN HEXADECIMAL VALUES OF LESS
447 REM THAN 'F'(15). EX. '7' $=107$ ' ETC.
450 NO $\$(L)=N O \$(L)+M I D \$(H \$, C \%+1,1)$
455 IF A<16 THEN NO $\$(L)=\left(10^{\prime}+N O \$(L)\right)$
$460 \mathrm{D}=\mathrm{INT}(\mathrm{D}-\mathrm{C} \% \mathrm{~K} \mathrm{X})$
470 NEXT J
480 FOR J=F\% TO O STEP -1
$490 \mathrm{X}=\mathrm{INT}\left(\mathrm{B} \%{ }^{\wedge} \mathrm{J}\right.$)
$500 \mathrm{C} \%=\mathrm{INT}(\mathrm{I} / \mathrm{X})$
$510 \mathrm{~N} 1 \$(\mathrm{~L})=\mathrm{N} I \$(\mathrm{~L})+\mathrm{MID} \$(\mathrm{H} \$, C \%+1,1)$
$520 \mathrm{I}=\mathrm{INT}(\mathrm{I}-\mathrm{C} \% \mathrm{~K}$)
530 NEXT J

532 REM SUBROUTINE FOR DECIMAL TO HEXADECIMAL CONVERSION ENDS HERE
$535 \mathrm{~L}=\mathrm{L}+1$
536 REM LINE 542 CHECKS TO SEE IF THE
537 REM REQUIRED NUMBER OF CHARACTERS
538 PER LINE HAVE BEEN DONE. THE TEST VALUE
539 NUMBER 33 *MUS 「* BE CHANGED TO A NUMBER 9 IF A "BARE" PET IS USED.
542 IF Lく>33 THEN 570
545 PRINT N1\$(1)," ",NO\$(1)," ",NO\$(2)," ",NO\$(3)," ",NO\$(4)," ",NO\$(5),
546 PRINT " ",NO\$(6)," ",NO\$(7)," ",NO\$(8)," ",NO\$(9)," ",NO\$(10)," ",
547 PRINT NO\$(11)," ",NO\$(12)," ",NO\$(13)," ",NO\$(14)," ",NO\$(15)," ",
548 PRINT NO\$(16)," ",NO\$(17)," ",NO\$(18)," ",NO\$(19)," ",NO\$(20)," ",
549 PRINT NO\$(21)," ",NO\$(22),"-",NO\$(23)," ",NO\$(24)," ",NO\$(25)," ",
550 PRINT NO\$(26)," ",NO\$(27)," ",NO\$(28)," ",NO\$(29)," ",NO\$(30)," ",
560 PRINT NO\$(31)," ",NO\$(32)
$565 \mathrm{~L}=1$
570 NEXT K
600 REM THE PRINT STATEMENT FOR THE PET
602 REM WITH NO PRINTER "BARE" SHOULD BE AS FOLLOWS:
606 REM PRINT NI\$(l);" ";NO\$(1)," ";
608 REM NO\$(2);" ";NO\$(3);" "NO\$(4);
610 REM " ";NO\$(5);" ";NO\$(6);" ";
612 REM NO\$(7);" ";NO\$(8);" ";NO\$(9)
615 END

 CIER 450745

BREFK IN 240
REGOY
Example of a partial Hex Dump obtained with the Program

SYM-1, 6502-BASED MICROCOMPUTER

- FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's ready-to-use
- ALL LSI IC'S ARE IN SOCKETS
- 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 "SPECIAL" FUNCTIONS
- EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
- KIM-1* HARDWARE COMPATIBILITY

The powerful 6502 8-Bit MICROPROCESSOR whose advanced architectural features have made it one of the largest selling "micros" on the market today.

- THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to the user, expandable to five on-board.
- 4 B BYTE. ROM RESIDENT MONITOR and Operating Programs.
- Single 5 Volt power supply is all that is required.
- IK BYTES OF 2114 STATIC RAM onboard with sockets provided for immediate expansion to 4 K bytes onboard, with total memory expansion to 65,536 bytes.
- USER PROM/ROM: The system is equipped with 3 PROM/ROM expansion sockets for $2316 / 2332$ ROMs or 2716 EPROMs
- ENHANCED SOFTWARE with simplified user interface
- STANDARD INTERFACES INCLUDE:
—Audio Cassette Recorder Interface with Remote Control (Two modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
-Full duplex 20 mA Teletype Interface
-System Expansion Bus Interface
-TV Controller Board Interface
—CRT Compatible Interface (RS-232)
- APPLICATION PORT: 15 Bi-directional TTL Lines for user applications with expansion capability for added lines
- EXPANSION PORT FOR ADD-ON MODULES (51 I/O Lines included in the basic system)
- SEPARATE POWER SUPPLY connector for easy disconnect of the d-c power
- AUDIBLE RESPONSE KEYPAD

Synertek has enhanced KIM-1* software as well as the hardware. The software has simplified the user interface. The basic SYM-1 system is programmed in machine language. Monitor status is easily accessible, and the monitor gives the keypad user the same full functional capability of the TTY user. The SYM-1 has everything the KIM-1* has to offer, plus so much more that we cannot begin to tell you here. So, if you want to know more, the SYM-1 User Manual is available, separately.
SYM-1 Complete w/manuals
$\$ 269.00$
SYM-1 User Manual Only
7.00
SYM-1 Expansion Kit
75.00

Expansion includes 3 K of 2114 RAM chips and $1-65221 / \mathrm{O}$ chip. SYM-1 Manuals: The well arganized documentation package is complete and easy-to-understand.
SYM-1 CAN GROW AS YOU GROW. Its the system to BUILD-ON. Expansion features that are soon to be offered:
$\begin{array}{lr}\text { *BAS-1 8K Basic ROM (Microsoft) } & \$ 159.00 \\ \text { *KTM-2 TV Interface Board } & \mathbf{3 4 9 . 0 0}\end{array}$ *We do honor Synertek discount coupons
*We do honor Synertek discount coupon
QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 \& AIM 65
These boards are set up for use with a regulated power supply such as the one below, but, provisions have been made so that you can add onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard regulators. All I.C.'s are socketed for ease of maintenance. All board's carry full 90 -day warranty.
All products that we manufacture are designed to meet or exceed industrial standards. All components are first qualtiy and meet full manufacturer's specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to 75%. To you, this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of less than forty-eight hours for repair.
Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a $\$ 10.00$ restocking charge per board.

VAK-1 8-SLOT MOTHERBOARD

This motherboard uses the KIM-4* bus structure. It provides eight (8) expansion board sockets with rigid card cage. Separate jacks for audio cassette, TTY and power supply are provided. Fully buffered bus.

VAK-1 Motherboard

$\$ 129.00$

VAK-2/4 16K STATIC RAM BOARD

This board using 2114 RAMs is configured in two (2) separately addressable 8 K blocks with individual write-protect switches.

VAK-2 16K RAM Board with only	$\$ 239.00$
8K of RAM (1/2 populated)	
VAK-3 Complete set of chips to	
expand above board to 16 K	
VAK-4 Fully populated 16K RAM	$\$ 175.00$

VAK-5 2708 EPROM PROGRAMMER
This board requires $a+5 V D C$ and ± 12 VDC, but has a $D C$ to $D C$
multiplyer so there is no need for an additional power supply. All software is resident in on-board ROM, and has a zero-insertion socket. VAK-5 2708 EPROM Programmer
$\$ 269.00$
VAK-6 EPROM BOARD
This board will hold 8 K of 2708 or 2758 , or 16 K of 2716 or 2516 EPROMs. EPROMs not included.

VAK-6 EPROM Board \$129.00
VAK-7 COMPLETE FLOPPY-DISK SYSTEM (May '79)

VAK-8 PROTYPING BOARD

This board allows you to create your own interfaces to plug into the motherboard. Etched circuitry is provided for regulators, address and data bus drivers; with a large area for either wire-wrapped or soldered IC circuitry.

VAK-8 Protyping Board
$\$ 49.00$

POWER SUPPLIES

ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2 -year warranty. FULL SYSTEM POWER SUPPLY

This power supply will handle a microcomputer and up to 65 K of our VAK-4 RAM. ADDITIONAL FEATURES ARE: Over voltage Protection on 5 volts, fused, AC on/off switch. Equivalent to units selling for $\$ 225.00$ or more.
Provides + 5 VDC@ 10 Amps \& ± 12 VDC@ 1 Amp
VAK-EPS Power Supply

KIM-1* Custom P.S. provides 5VDC@1.2 Amps and + 12 VDC@. 1 Amps

KCP-1 Power Supply
$\$ 41.50$
SYM-1 Custom P.S. provides 5 VDC @ 1.4 Amps VCP-1 Power Supply
$\$ 41.50$

SUPER HI-LO FOR THE SYM-1

Jack Gieryic
2041 138th Ave. N.W.
Andover, MN 55303

Super HI-Lo has a new twist to the game. This program fits into the standard 1K SYM and execution begins at location 200. The left two LED digits are your upper limit (initialized to 99) and the middle two digits are your lower limit (initialized to 00). SYM picks a random number and you attempt to guess it. Your attempt count is seen in the right two digits. The right digit will blink when it's your last guess.

After entering the command CO 200 CR press any key to start the contest. Enter your two digit guess (decimal only) and hit the " A " key. Win or loose you get an appropriate message at the end after which the LED's go blank. Hit any key and you are ready for a second game. If you didn't guess the number then you will be given one more chance in the next game. If you are lucky enough to guess the number then you will have one less chance the next game.

For you SYMMERS who are interested in taking things one step further, you will find MESSAC an interesting subroutine you may want to incorporate in your own programs. This code is entirely
relocatable except for the first four instructions which must be calculated if the code is moved. The routine uses page zero locations $O D, O E, O F$ and 10 , but you can change that too if necessary. The A and X registers contain the message buffer address per comments in the program. This message buffer contains segment codes which will light up any combination of LED segments.

Refer to Figure $4-6$ Keyboard/Display Schematic in your reference manual for the LED segments in the lower right corner. Segment " a " is turned on by setting bit 0 to a one in a message buffer entry. Segment " b " is controlled by bit 1 and so on with segments c, d, e, f, g and the decimal point. Thus a hex 5 C is a lower case O (segments $c, d ; e$, and g). Feel free to change either message but don't forget to add a few OO characters at the start and end of your message. If you relocate the message buffer then change the register parameters prior to the call to MESSAC.

One other note on the program. By changing the value at location 206 you can alter the rate at which the right LED will blink when you reach your last chance.

NOW AVAILABLE

General Pack 1

(Checkbook Balancer, Tic Tac Toe, Metric Conversion)

General Pack 2
(Space Patrol, Biorhythm, Battlestar, One-Armed Bandit)

Financial Pack 1
(loans, Depreciation, Investments)

Financial Pack 2

(Mortgage \& Loan Amortization, Future
Projections, Risk Analysis)

Statistics Pack 1

(Mean \& Deviation, Linear Correlations \& Regression, Distribution, Contingency Table Analysis)

Game Pack 1
 (Basketball, Object Removal, Bowling, Darts, Gopher)

$\$ 10.95$ (Arithmetic God, Addition Dice, Distance $=$ Rate X Time)

Game Pack 2 -

(children-educational)

Tape Data Query
 (File Management System)

PCROS a Real.Time Operating
System in IK KIM RAM

Assembly listing

Cassette tape with user's manual 14.95

Schematic for relay control board
9.95

All programs on high-quality cassette tape.
Send self-address, stamped envelope for complete software catalogue.
Send check or money order to:

H. GELLER COMPUTER SYSTEMS
Dept. M
P.O. Box 350

New York, New York 10040
(New York residents add applicable sales tax)

```
SYM SUPER HI-LO
JOHN GIERYIC
APRIL }197
```

SYM REFERENCES

0219	8503		STA	RAN	RANDOM NUMBER
021B	E6 03	INCRAN	INC	RAN	INCREMENT RANDOM NUMBER
021D	A5 03		LDA	RAN	
$021 F$	C9 63		CMPIM	\$63	IF EQUAL 99 DECIMAL
0221	D0 04		BNE	KEYIN	
0223	A9 02		LDAIM	\$02	THEN RESET TO 2
0225	8503		STA	RAN	
0227	20 6A 89	KEYIN	JSR	KYSTAT	IS A KEY DOWN?
022A	90 EF		BCC	INCRAN	LOOP UNTIL ONE IS DOWN
022C	A5 00	LIMITS	LDA	UPP	PUT UPPER, LOWER AND
022E	200003		JSR	HTDEC	ATTEMPT COUNT IN
0231	20 FA 82		JSR	OUTBYT	DISPLAY BUFFER
0234	A5 01		LDA	LOW	
0236	200003		JSR	HTDEC	
0239	20 FA 82		JSR	OUTBYT	
023C	A5 02		LDA	ACNT	
023E	200003		JSR	HTDEC	
0241	20 FA 82		JSR	OUTBYT	
0244	200689	DISP	JSR	SCAND	LICHT LED
0247	$20 \quad 2389$		JSR	KEYO	IF KEY IS DOWN,
024A	DO 30		BNE	READK.	
024C	A5 07		LDA	BLINK	If BLINKING IS REQUESTED
024E	C9 01		CMPIM	\$01	
0250	DO F2		BNE	DISP	
0252	A5 0B		LDA	ONOFF	IF TIME TO TURN CHARACTER ON
0254	DO 21		BNE	INCLOP	
0256	A5 09		LDA	DARK	IF TURN CHAR. OFF
0258	C9 01		CMPIM	\$01	
025A	DO OE		BNE	RIGHT	
025C	AD 45 A6		LDA	RDIG	THEN GET CHARACTER
025F	8508		STA	TDIG	SAVE IT
0261	A9 00		LDAIM	\$00	SET RIGHT DIGIT BLANK
0263	8D 45 A6		STA	RDIG	
0266	C6 09		DEC	DARK	SWITCH FLAG
0268	FO 07		BEQ	LCOUNT	
026A	A5 08	RIGHT	LDA	TDIG	ELSE RESTORE RIGHT DIGIT
026C	8D 45 A6		STA	RDIG	
026F	E6 09		INC	DARK	SWITCH FLAG
0271	A5 0C	LCOUNT	LDA	BLIM	RESET LOOP COUNTER
0273	85 OB		STA	ONOFF	
0275	DO CD		BNE	DISP	
0277	E6 OB	INCLOP	INC	ONOFF	INCR. LOOP COUNTER
0279	4C 4402		JMP	DISP	LOOP
027C	20 AF 88	READK	JSR	GETKEY	GET DEPRESSED KEY
027F	207582		JSR	ASCNIB	
0282	C9 OA		CMPIM	\$0A	IS IT "A" (ATTEMPT)
0284	FO OB		BEQ	SETLOP	YES
0286	AA		TAX		NO
0287	A5 05		LDA	UGES	MOVE PREVIOUS KEY
0289	8506		STA	TGES	TO TENS DIGIT
028B	8A		TXA		
028C	8505		STA	UGES	PUT NEW KEY INTO UNITS

028E	4C 4402		JMP	DISP	LOOP
0291	A6 06	SETLOP	LDX	TGES	SET LOCP INDEX (TENS)
0293	A9 00		LDAIM	\$00	INIT A REGISTER
0295	18		CLC		CLEAR CARRY FALG
0296	CA	DECX	DEX		DECR. X REG.
0297	3004		BMI	ADUNIT	IF NEG, THEN FINISHED
0299	69 DA		ADCIM	\$0A	ELSE ADD 10
029B	D0 F9		BNE	DECX	LOOP
029D	6505	ADUNIT	ADC	UGES	ADD UNITS VALUE
029 F	C5 03		CMP	RAN	COMPARE TO RANDOM
02 Al	DO 03		BNE	ADUP	
02A3	4C E4 02		JMP	SUCEED	GUESS $=$ RANDOM
02A6	9009	ADUP	BCC	TLOW	
0248	C5 00		CMP	UPP	
02AA	BO OB		BCS	INCA	
02AC	8500	RUP	STA	UPP	REPLACE UPPER WITH GUESS
O2AE	4C B7 02		JMP	INCA	
02B1	C5 01	TLOW	CMP	LOW	
02B3	9002		BCC	INCA	
02B5	8501		STA	LOW	REPLACE LOWER WITH GUESS
02B7	E6 02	INCA	INC	ACNT	INCR. ATTEMPT COUNT
02B9	A5 02		LDA	ACNT	LIMIT REACHED?
02BB	C5 OA		CMP	LATT	
O2BD	DO 03		BNE	TEST	NO
02BF	4C D8 02		JMP	FAIL	YES $=$ FAILURE
02C2	38	TEST	SEC		
02 C 3	A5 OA		LDA	LATT	LAST ATTEMPT COMING UP
02C5	E5 02		SBC	ACNT	
02 C 7	C9 01		CMPIM	\$01	
02C9	DO OA		BNE	WAIT	NO
02CB	E6 07		INC	BLINK	YES - INIT FOR BLINKING
O2CD	A5 OC		LDA	BLIM	
02CF	85 0B		STA	ONOFF	
O2D1	A9 01		LDAIM	\$01	
02D3	8509		STA	DARK	
02D5	4C 2C 02	WAIT	JMP	LIMITS	GO WAIT FOR NEXT ATTEMPT
O2D8	E6 OA	FAIL	INC	LATT	FAILURE $=$ INCR ATTEMPT LIMIT
02DA	A2 03		LDXIM	MFAIL	/ MESSAGE HI BYTE
O2DC	A9 60		LDAIM	MFAIL	MESSAGE LO BYTE
02DE	201703		JSR	MESSAG	DISPLAY FAILURE MESSAGE
02E1	4C OB C2		JMP	TILL	RESTART HI-LO
02E4	C6 OA	SUCEED	DEC	LATT	SUCCESS $=$ DECR ATTEMPT LIMIT
02E6	A2 03		LDXIM	MSUCC	/ MESSAGE HI BYTE
02 E 8	A9 80		LDAIM	MSUCC	MESSAGE LO BYTE
02EA	201703		JSR	MESSAG	DISPLAY SUCCESS MESSAGE
O2ED	4 C 0 B 02		JMP	TILL	RESTART HI-LO
		SUBROUTINE HTDEC			
		ENTRY	JSR HT	TDEC	

THIS ROUTINE WILL CONVERT A HEX NUMBER TO DECIMAL. UPON ENTRY THE A REGISTER CONTAINS THE NUMBER TO CONVERT. UPON EXIT THE A REG. CONTAINS THE UNITS DIGIT AND THE X REGISTER CONTAINS THE TENS DIGIT.

0317 8D 2403	MESSAG	STA	MAD	+Ol CHANGE INSTRUCTION
031A 8E 2503		STX	MAD	+02
031D 8D 3703		STA	MADX	+01 CHANGE INSTRUCTION
03208 E 3803		STX	MADX	+02
0323 AD FF FF	MAD	LDA	\$FFFF	ADDRESS WILL BE CHANGED
03268510		STA	CLIM	
0328 A9 00		LDAIM	\$00	
032A 85 OD		STA	COUNT	
032C 85 DE		STA	LOOPA	
032E 85 DF		STA	LOOPB	
0330 E6 OD		INC	COUNT	
0332 A4 OD	MESS	LDY	COUNT	
0334 A2 00		LDXIM	\$00	
0336 B9 FF FF	MADX	LDAY	\$FFFF	ADDRESS WILL BE CHANGED
0339 9D 40 A6		STAX	DISBUF	
033C C8		INY		
033D E8		INX		
033E EO 06		CPXIM	\$06	
0340 DO F4		BNE	MADX	

0342	E6 OD		INC	COUNT
0344	200689	MESSA	JSR	SCAND
0347	E6 OE		INC	LOOPA
0349	D0 F9		BNE	MESSA
034B	E6 OF		INC	LOOPB
034D	A5 OF		LDA	LOOPB
034F	C9 02		CMPIM	\$02
0351	DO Fl		BNE	MESSA
0353	A5 DE		LDA	LOOPA
0355	85 OF		STA	LOOPB
0357	A5 DD		LDA	COUNT
0359	C5 10		CMP	CLIM
035B	D0 D5		BNE	MESS
035D	60		RTS	

THE FAILURE MESSAGE BEGINS AT LOCATION 0360.
THE FIRST BYTE IS THE HEX NUMBER OF BYTES IN
the message minus five. the message is in the
FORM OF SEGMENT CODES. A MEMORY LISTING FOLLOWS.
LOAD THIS BEGINNING AT LOCATION 0360.

0360	$0 B$	00	00	$6 E$	$3 F$	$3 E$	00	38	$3 F$	$3 F$
0368	$3 F$	$3 F$	$6 D$	79	00	00	00	00		

THE SUCCESS MESSAGE BEGINS AT LOCATION 0380.

0380	08	00	00	39	$5 C$	50	50	79
0388	58	78	00	00	00			

KIM/SYM/AIM ACCESSORIES BY MTU

REAL GRAPHICS FROM OUR VISIBLE MEMORY
Over the last year and a half we have delivered hundreds of our Visible Memory graphic display boards and customers are still finding novel uses for them. The Visible Memory is an 8 K byte memory board that is directly compatible with the KIMISYM/AIM computers and functions just like an 8 K memory expansion. Its content however is also displayed on a standard video monitor as a 320 by 200 dot array with each dot corresponding to a bit in memory. Since each dot is individually controllable, any kind of image, even text (22 lines, 53 characters) with subscripts/superscripts is possible. Our assembly language graphics/text software package makes programming the Visible Memory easy. Microsoft 9-digit BASIC users now have access to the graphics and text routines through our just released BASIC Patches Package. In fact, the images above were created entirely with SIMPLE BASIC programs.

K-1008A VISIBLE MEMORY $\$ 240.00$ OTHER ITEMS

KIM Power supply $\$ 35.00 \quad$ AIM Power supply $\$ 80.00$ Enclosed card file for 4 boards KIM $\$ 75$ SYM $\$ 80$ AIM $\$ 95$ 8-bit audio system DAC-Filter-Amp. KIM/SYM/AIM \$40 PET \$50 PET to MTU style KIMISYMIAIM bus adaptor \$79 Prototyping board, fits in card file, 2 regulators $\$ 42$ We have sophisticated music and graphics software too!
PLEASE REQUEST OUR NEW, EXPANDED SPRING 1979 CATALOG

16K LOW POWER MEMORY
Do you want more memory for your KIM/SYM/AIM but don't have a 5 amp power supply or fan to cool it? Our 16K low power dynamic RAM board is designed for these processors and draws a mere 200MA from 8 volts unregulated and 200MA max (75 MA typical) from +16 volts unregulated. Our little K-1000 power supply can in fact run 64 K of these boards plus a KIM easily.

K-1016A 16K RAM $\mathbf{\$ 3 4 0} \mathbf{0} 00$
We now have available a multifunction system board for the KIM/SYM/AIM processors. It has a PROM capacity of 12 K using the industry standard 2708 PROM or 14K using the readily available TI 2716. Also included is a 2708/2716 PROM programmer, 4 paraliel ports, and a bidirectional serial port. Low power: +8 at 350MA, +16 250MA.
K-1012A PROM/10 \$237.00

The best memory board around. Here's why
 - Low power 2114 Static RAM's
 - Two independent $8 \mathrm{Kx8}$ memory banks
 - Fully buffered
 - High quality IC sockets
 - All switches accessible from top of board
 - Top grade glass fiber PCB, with gold plated contact area.
 - Dual regulators
 - One supply only, 7-9V unregulated

 \section*{16K Static RAM \$325.00

 \section*{16K Static RAM \$325.00 Assembled only.}

 Assembled only.}}

Designed specifically for the: KIM-1, SYM-1, AIM-65.

Specifications: Access time 450 nS max.
Power consumption 1.35 amp . typ.
Also available: Buffered Mother Board, EPROM Programmer, CVT Power Supply. Software: Standard Forth Compiler, Sea-65 Editor/Assembler.
Order from local dealer or directly from:
SEAWELL MARKETING INC., 315 N.W. 85th, Seattie, WA 98117 • (206) 782-9480 Available in Europe. Write for dealer list.
\qquad
\qquad
\qquad

LIGHT PEN FOR THE APPLE-\#035-03610

Plugs into the game paddle connector. It includes three demo programs:

1. This demonstration program is a tutorial on the use of the lite pen as a menu selection tool. It is self prompting and instructing and is a perfect example of a realistic lite pen application.
2. This demonstration program is a "low-resolution" graphics demonstration which allows the user to select from a menu of "high-resolution'" shapes. In addition, the user is also given the capability of selecting colors from a color menu. Selection from either of the two menus is accomplished by depressing the RETURN key. To place the selected shape on the screen, depress the RETURN key
3. This demonstration program is a "low-resolution" graphics color bit-pad demonstration. A color menu is displayed and user selects a color by depressing any key. To place the color on the screen, depress any key. To clear the working screen the user depresses the ESC key.

The lower case adapter will only work in the normal field mode. Inverse or flashing lower case characters will not work. This adapter will increase your Apple into a 96 character character-set. It also includes a few other characters like

COMMODORE 8K PETS, 8 LEFT AT THE REDUCED PRICE OF
\$ 699.95
Plus $\$ 15.00$ for Shipping \& Handing Call For Confirmation and Reservation

16K RAM FOR APPLE II, 200NS or Better
\$ 75.00
Plus $\$ 2.00$ for Shipping \& Handling

PROGRAM DESIGN INC. Software is probably the best written educational software available. We have the complete line of P.D.I. software for the PET ${ }^{T M}$ and the APPLE II. Following is a list of titles available from P.D.I.:
VOCABULARY BLDR. I, \#016-01259, 16K INT BASIC: First tape in a two tape course. 10 lessons \& 1 quiz ea. tape \$ 13.50
VOCABULARY BLDR. II, \#016-01314, 16K INT BASIC: The second tape in a two tape course. 10 lessons \& 1 quiz on ea. tape
PRESCHOOL IQ-BUILDER, \#016-01195, 16K INT BASIC: 6 lessons: "Same \& Different' \& 1 program letter builder
STEP BY STEP, \#016-01356, 16K APPLESOFT II: A tutorial program in computer language of Applesoft II basic. 10 lessons ... \$ 39.95 WORD MASTER/STORY BUILDER, *016-01399, 16K INT BASIC: Thinking person's game. Nouns, verbs \& adjectives
MEMORY BUILDER, \#016-01410, 16K INT BASIC: A concentration game with 20 boxes on screen
Following is a list of software companies that we deal with. (We are adding new software every month).
APPLE Software Bank • Speakeasy - Powersoft • Forum • Southeastern Software - Wise Owl Workshop • Program Design inc.
Programma International • Personal Software •Quality Software • Peripherals Unlimited Software •George W. Lee Software • Pet Shack Creative Computing •ZZYP-PAX • Softape

A 100 uS 16 CHANNEL ANALOG TO DIGITAL CONVERTER
 FOR 65XX MICROCOMPUTER SYSTEMS

J. C. Williams

55 Holcomb St.
Simsbury, CT 06070

Analog to digital (A/D) conversion can be useful in many microcomputer systems. The design presented here takes advantage of a large scale integrated circuit,: the ADC08I7, to simplify a 16 channel, 8 bit A/D system which can be attached to the bus of $65 \times X$ microcomputers. The applications that 1 have found for this system have inciuded "straight" data acquisition, game joystick position reading, graphic input generation and voice recognition. Of course, the software for each of these applications is different, but they all require multichannel, reasonably fast A/D. The 100 us conversion time of this system depends only on the 1 MHz clock frequency of the microcomputer. The microprocessor is not involved in the A/D conversions. Once the conversion is started, the processor can work on other tasks until the digital result is available.

The Hardware

This device appears to the programmer as a block of memory starting at a base address, BASE, and extending through 16 locations to BASE +15 . (The actual circuit described occupies 256 locations because of incomplete decoding.) An analog to digital conversion of a selcted channel, say channel X, is started by writing to BASE $+X$. The 8 bit conversion result may then be read from any location in the block (eg. BASE) any time after the 100 US conversion time has elapsed. If desired, the end of conversion signal from the ADC0817 may cause an interrupt to get the attention of the processor. If multiple A / D conversions at the niaxinum speed are required the 65 XX can be kept busy with "housekeeping" during the conversion delay time. The example programs illustrate two ways the converter may be driven. The system uses just five integrated circuits and can be built for less than $\$ 40$. The design, shown in Figure 1, occupies a six square inch area on a Vector plugboard and draws only 60 mA of current from the $t 8$ Volt DC unregulated power supply. Operation of the circuit is simple because the ADC0817 performs all analog switching and A / D functions. The base address of the converter is fixed by six switches attached to the DM8131 six bit comparitor. When the processor accesses memory locations having address bits A15-A10 matching the switch settings, the DM8131 output goes low. This output is NOR'ed with A9 and A8 to further reduce the memory space occupied by the circuit to one 65 XX page. The possible base addresses which can be obtained with this decoder can fall on any $1 K$ boundary and $A 9$ and $A 8$ must be " O 's". For example. base addresses (in hex) can be set to A000 or A400 but not A100, A200, or A300. In the design drawn, A9 and A8 must be low for the \triangle ' D to be selected, but this could be rhanged if $A 9$ and/or A8 were inverted using unused sections of the 74LS05. When the A/Disselected, the output of the NOR gate (pin 12 of the 74 L 227) goes to a " 1 "; this can be used as a "board selected" signal if needed (eg. by KIM-1 users for DECODE FNABLE). The microprocessor R / W and 02 lines, along with an inverted board select signal and combined in two NOR gates which 1) latch channel select bits A3-A0 and start A/D conversion during 02 of write cycles and 2) enable the tri-state data bus drivers during 02 of
read cycles. The end of conversion (EOC) signal, produced by the ADC0817 when the most recent conversion has been completed, can be connected to a processor interrupt line through one of the 74LS05 open collector inverters. These interrupts must be cleared by starting another A/D conversion.
Wire-wrap construction is suitable for the circuit and component layout is not critical. It is good practice, however, to orient the analog input area away from digital circuits. The REF \dagger and REFreference voltages must not be noisy if the full accuracy, 20 mV per bit, is to be achieved. The $t 5$ Volt regulator should not be shared with other circuitry. The layout used in one of the prototypes is sketched in Figure 2. Figure 2 also shows several input connections which may be useful. The circuit has two limitations: 1) input voltages must be between 0 and $t 5$ Volts and 2) signals being converted should not change appreciably during the 100 us conversion period. Both of these limitations may be eliminated by appropriate analog conditioning circuitry, but the simplicity of the design is lost. Builders who want to add features to the circuit should consult the ADC0817 specification and application information.

The Software

Two example subroutines which use the A/D converter illustrate how it is handled by software. The program which calls the A/D subroutine must initialize both the channel selection and storage defining parameters before the JSR instruction is executed. In the examples, an index register contains the channel selection information because of the ease of using an indexed addressing mode to start a conversion. Data storage is either on page 0 or pointed to by page 0 variables. The A/D subroutines must either contain delays or take enough time between writing to and reading from the ADC0817 to allow it to finish the conversion. Components for this very useful piece of hardware can be obtained from a number of sources readily available to low-volume users. Both National Semiconductor and Texas Instruments .produce the ADC0817 and its more accurate counterpart, the ADC0816. The ADC0817 and its data sheet have been recently listed by TRI-TEK; Inc., 7808 N. 27 th Ave., Phoenix, AZ 85021. Many other suppliers, such as Jameco Electronics, 1021 Howard Avenue.; San Carlos, CA 94979, and Advanced Computer Products, 1310 "B" E. Edinger, Santa Ana, CA 92713, can supply the other components.

 PRESENTS SOFTWARE AND HARDWARE FOR YOUR APPLE

SOFTWARE:

- Hires Games -

Missile-Anti-Missile
Star Wars
Rocket Pilot
Saucer Invasion
Space Maze

- Other Program

Curve Fit
Sales Forecasting
Morse Code
Calendar
by Ed Handley
By Robert J. Bishop Polar Coordinate Plot(Hires) By T. David Moteles

Programs Require 16K rams and rom board
All Programs.
$\$ 9.95$ EACH

HARDWARE

Neil Lipson's Original Light Pen Includes
5 Programs
$\$ 34.95$

SEND Check or M.O. to P.O. Box 273, Ply. Mtg., PA 19462
Programs Accepted for Publication- Highest Royalty Paid

Postage and Handling-Add $\mathbf{\$ 1 . 0 0}$ for first item them $\mathbf{5 0}^{〔}$ for each add'l
PA Residents Add 6\% Sales Tax

MCAD - MULTI-CHANNEL A/D CONVERSION
J. C. WILLIAMS

JANUARY 1979

0200		ORG	\$0200	
0200	BASE	*	\$8000	BASE ADDRESS OF ADC0816
0200	STORE	*	\$9000	START OF 16 BYTE STORAGE AREA
0200 9D 00 BO	MCAD	STAX	BASE	START CONVERSION ON CHANNEL X
0203 AD OE		LDYIM	\$OE	DELAY FOR CONVERSION,
020588	DY	DEY		MINIMUM VALUE $=$ \$OE
0206 DO FD		BNE	DY	
0208 AD 00 BO		LDA	BASE	GET CONVERTED DATA
O20B 9D 0090		STAX	Store	Store data
020E CA		DEX		
020F 10 EF		BPL	MCAD	DO NEXT CHANNEL
021160		RTS		FINISHED

EXAMPLE CALLING ROUTINE FOR MCAD

CXAD SUBROUTINE
J. C. WILLIAMS

JANUARY 1979

0300		ORG	\$0300	
0300	BASE	*	\$8000	BASE ADDRESS OF ADC0816
0300	SP	*	\$0000	STORAGE POINTER
0300	SPSTR	*	\$0002	LOC OF STORAGE BLOCK START ADDRESS
0300	SPSTP	*	\$0004	LOC OF STORAGE BLOCK END ADDRESS
0300900080	CXAD	STAX	BASE	START FIRST CONVERSION
0303 A5 02		LDAZ	SPSTR	INIT STORAGE POINTER
03058500		STAZ	SP	
0307 A5 03		LDAZ	SPSTR	+01
03098501		STAZ	SP	+01
030B D8		CLD		USE BINARY MODE
030C AD 05		LDYIM	\$05	INSERT DELAY TO ALLOW
O30E 88	DY	DEY		INITIAL CONV. TO COMPLETE
O30F DO FD		BNE	DY	
0311 F0 16		BEQ	DELAY	
0313 A5 00	TSTEND	LDAZ	SP	TEST FOR END OF
0315 C5 04		CMPZ	SPSTP	STORAGE BLOCK
0317 A5 D1		LDAZ	SP	+01
0319 E5 05		SBCZ	SPSTP	+01
031B B0 1D		BCS	RT	
031D A9 01		LDAIM	\$01	ADD ONE TO STORAGE POINTER
031F 6500		ADCZ	SP	
03218500		STAZ	SP	
0323 A9 00		LDAIM	\$00	
03256501		ADCZ	SP	+01
03278501		STAZ	SP	+01
0329 AO 05	DELAY	LDYIM	\$05	DELAY TO FIX TIME BETWEEN CONV'S.
032B 88	DYA	DEY		
032C DO FD		BNE	DYA	
032E AD OO BO		LDA	BASE	READ CONVERTED RESULT
0331 9D OO BO		STAX	BASE	START NEXT CONVERSION IMMEDIATELY
0334 AD 00		LDYIM	\$00	SET STORAGE CFFSET
03369100		STAIY	SP	STORE RESULTS
0338 FO D9		BEQ	TSTEND	ALWAYS TAKEN
033A 60	RT	RTS		
	EXAMPLE	CALLI	ING ROUT	INE FOR CXAD
033B A2 00	CXMAIN	LDXIM	\$00	SELECT CHANNEL 0
033D A9 00		LDAIM	\$00	SET STARTING ADDRESS OF
033F 8502		STAZ	SPSTR	STORAGE BLOCK TO \$9000
0341 A9 90		LDAIM	\$90	
03438503		STAZ	SPSTR	+01
0345 A9 FF		LDAIM	\$FF	SET ENDING ADDRESS OF
03478504		STAZ	SPSTP	STORAGE BLOCK TO \$9FFF
0349 A9 9F		LDAIM	\$9F	
034B 8505		STAZ	SPSTP	+01
0340200003		JSR	CXAD	
035000		BRK		EXIT ** BE SURE TO INIT IRO VECTOR

FIGURE 1
16 CHANNEL ANALOG TO DIGITAL CONVERTER SYSTEM FOR 65XX MICROPROCESSOR SYSTENS

FIGURE 2

16 CHANNEL A/D CONVERTER FOR 65XX SYSTEMS

INPUT CONNECTOR DETAIL

 TOP VIEW
 GMD • +5
 IN14 - . IN15
 IN12.. IN13
 INIO . . INII
 IN8 . . TN9
 IN6 . . INT
 IN4 • IN5
 IN2 • IN3
 INO . . INL
 APPLICATIONS
GND • +5

$-25^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}$
TEMPERATURE SENSOR

BOX 120, ALLAMUCHY, N.J. 07820 - 201-362-6574

KIM-1 PRODUCTS FROM HDE, INC.

DM-816-M8 8K STATIC RAM MEMORY
This is the finest memory board available for the KIM-1 at any price. Commercial/Industrial quality. All boards are continuously operated and tested for a minimum of 100 hours prior to release. Full 6 month parts labor warranty.

DM-816-DI1 8" FLEXIBLE DISK SYSTEM

Available in single and dual drive versions. Includes interface card, power-supply, Sykes controller and drive, cables and manual. File Oriented Disk System software with HDE text editor.

DM-816-MD1 5" FLEXIBLE DISK SYSTEM

Single and dual drive versions include interface/controller, power supply, Shugart drive, cables and manual. Advanced version of FODS software with HDE text editor. Latest addition to HDE peripheral product line.

DM-816-CC15 MOTHER BOARD

A professional mother board for the KIM-1. All KIM-1 functions remoted, includes power on reset. 15 connectors. Provision for Centronics printer interface. Card cage and cabinet configurations available.

DM-816-UB1 PROTOTYPE CARD

Designed for ease of special applications development. Handles up to 40 pin dips.

HDE ASSEMBLER

An advanced, two pass assembler using 6502 cross-assembler mnemonics. Free form, line oriented entry. Directives include: .OPTION, .BYTE, .WORD, .FILE, .OFFSET, .END. Output options include: LIST, NOLIST, SYMBOLS, NOSYMBOLS, GENERATE, NOGENERATE, ERRORS, NOERRORS, TAB, NOTAB. Assemble from single or multiple source files. Place source, object and symbol table anywhere in memory. Automatic paging with header and page number. User's manual. Approximately 4K. Loads at 2000 or E000. Specify on order.

HDE TEXT OUTPUT PROCESSING SYSTEM (TOPS)

A comprehensive output processor, including left, right and full justification, variable page length, page numbering (Arabic or U/C and L/C Roman), page titling, string constants, leading and trailing edge tabbing, field sequence modification, selective repeat, selective page output and much more. Over 30 commands to format and control output of letters, documents, manuscripts. User's manual. Approximately 4 K . Loads at 2100 or E100. Specify on order.

HDE DYNAMIC DEBUGGING TOOL (DDT)

Built in assembler/disassembler coupled with program controlled single step and dynamic breakpoint entry/deletion facilitates rapid isolation, identification and correction of programs under development. Keystrokes minimized with single letter, unshifted commands and optional arguments. User's manual. Approximately 2 K . Loads at 2000 or E000. Specify on order.

HDE COMPREHENSIVE MEMORY TEST (CMT)

Eight separate diagnostic routines test for a variety of memory problems. Each diagnostic, the sequence of execution, the number of passes and halt/continue on error is selected by the user on call-up. Tests include pattern entry and recall, walking bit, data-address interaction, access time and cross talk, simulated cassette load, slow leaks. Suitable for static and dynamic ram. User's manual. Approximately 3K. Loads at 2000 or E000. Specify on order.

HDE TEXT EDITOR (TED)

Complete, line oriented text editor accepts upper or lower case commands. Functions include line edit, line move, line delete, block delete, resequence, append, list, print, locate, set, scratch, automatic/semi-automatic line numbering, lastcommand recall, job command. This editor is supplied with all HDE Disk Systems. User's Manual. Approximately 4K. Loads at 2000 or E000. Specify on order.

ALL PROGRAMS ARE AVAILABLE FOR LOCATIONS OTHER THAN THOSE SPECIFIED AT ADDITIONAL CHARGE.

HDE Assembler

HDE Text Output Processing System (TOPS)
HDE Dynamic Debugging Tool (DDT)
HDE Comprehensive Memory Test (CMT)
HDE Text Editor (TED)

Disk-Note A Cassette-Note B Manual Only $\$ 75.00 \quad \$ 80.00 \quad \$ 5.00$ $135.00 \quad 142.50 \quad 10.00$ $65.00 \quad 68.50 \quad 5.00$ $\begin{array}{llrr}65.00 & 68.50 & 5.00 & 5.00 \\ 65.00 & 68.50 & 3.00 & 5.00\end{array}$ $\begin{array}{ll}68.50 & 3.00 \\ 50.00 & 5.00\end{array}$ $\begin{array}{llll}\text { N/C } & 50.00 & 5.00 & 15.00\end{array}$

Note C $\$ 25.00$ 15.00 5.00

Note B. Cassette versions available 2nd qtr. 1979.
Note C. Additional charge for object assembled to other than specified locations.

ORDER DIRECT OR FROM THESE FINE DEALERS:

JOHNSON COMPUTER Box 523
Medina, Ohio 44256 216-725-4560

PLAINSMAN MICROSYSTEMS
Box 1712
Auburn, Ala. 36830
800-633-8724

ARESCO
P.O. Box 43

Audubon, Pa. 19407
215-631-9052

COMPUTER GENERAL STORE 103 Atlantic Avenue Lynbrook, N.Y. 11563 516-887-1500

REAL-TIME GAMES ON OSI

David Morganstein 9523 48th Place
College Park, MD 20704

This note discusses how real-time games can be written for OSI Challenger systems which use a serial terminal run from the ACIA. The terminal in my system is an ADM-3A, but the same principal applies to any other. The sample program which is included does use the cursor control procedure of the ADM-3A, but it is a common enough terminal that many readers will be able to use it directly. The cursor control is accomplished in a one-line subroutine and can be changed to another procedure easily. My original goal was to write video games, but I did not have a separate TV monitor, 440 video board and A/D convertor to do this. Fortunately, there was a way!! First, I'll discuss a procedure for polling the serial terminal keyboard and then the video display on the terminal.
The basic idea was to use a PEEK command rather than an IMPUT statement. That way the program does not have to stop while the player ponders his response. This was the ONLY way to play Lunar Lander. The typical version gives the Captain unlimited time to ponder his response and minimizes crash landings. Several articles in BYTE and elsewhere talk about using A/D convertors and joysticks. Of course, this is a fine way to go, but the same effect can be created without the added hardware.
The input byte from the ACIA appears at \$FC01. To get a little appreciation for this, look at the ROM monitor routine starting at $\$ F E 00$, this is called INCH in the OSD documentation. (See Figure 1.) By peeking at 64513 (\$FC01), you can read the byte sent by the terminal. The only problem with this is the parity bit. That is, the bytes indicating the numbers $0-9$ do not increase smoothly but have bit 7 set or not to insure parity. You can solve this by
subtracting 128 when the PEEK (64513) is greater than 128. In the INCH routine this is accomplished with an AND \#\$7F, masking bit 7. In this way, you get values from 48 to 57 for the keys $0-9$. Now these values can be used to change the burn rate of the lunar lander.
The program is fairly short and is generally self-explanatory. The polling is done in subroutine 5000 . The test for 13 is needed since this is a null byte appearing before any keyboard entry has been made. As it now runs, extra boost can be given by typing a non-numeric. This should probably be prevented since it will allow a "sinking ship" to be saved, most unsporting!!

The other interesting feature is the cursor control. This is accomplished in line 6000. The ADM-3A requires two control bytes be sent, $\mathrm{CHR} \$(27)$ and $\mathrm{CHR} \mathrm{\$(61)}$, in order to set up the X and Y coordinates which follow. As given in the subroutine, the X value can be from 1 to 80 and the Y from 1 to 24 , which correspond to the column and row (counting from the top left) of the position to be printed. Be careful when using this to not exceed these ranges. The cursor control is used to set-up a "lander control panel" and then update the "meter readings" as the play progresses.
If your wondering what line 500 does, its used for timing. By adjusting the variable DE(lay), the speed of the game can be changed slightly. I was shooting for a twice per second update on the panel. Unfortunately, when the LOW FUEL WARNING comes on the timing changes. Well, you can't have everything. (I'm sure somebody out there will figure out how to correct this....)

FEOO				ORG	\$FEOO
FEOO	AD 00	FC	START	LDA	\$FCOO
FE03	4A			LSRA	
FE04	90 FA			BCC	START
FE06	AD 01	FC		LDA	\$FCOI
FE09	29 7F			ANDIM	\$7F
FEOB	48			PHA	
FEOC	AD 00	FC		LDA	\$FCOO
FEOF	4 A			LSRA	
FE10	4A			LSRA	
FEll	90 F9			BCC	\$FEOC
FE13	68			PLA	
FE14	8D 01	FC		STA	\$FCO1
FE17	60			RTS	
FE18	2000	FE		JSR	START
FE1B	C9 52			CMPIM	\$52
FE1D	FO 16			BEQ	\$FE35
FElF	C9 30			CMPIM	\$30
FE21	30 F5			BMI	\$FE18
FE23	C9 3A			CMPIM	\$3A
FE25	30 OB			BMI	\$FE32
FE27	C9 41			CMPIM	\$41
FE29	30 ED			BMI	\$FE18
FE2B	C9 47			CMPIM	\$47

```
100 PRINTCHR$(26):X=25:Y=10:GOSUB6000
104 PRINT"L U N A R L A N D E R ":Y=12:GOSUB6000
106 INPUT"DO YOU NEED INSTRUCTIONS (Y/N) ";N$
110 IFN$="N"GOTO190
115 PRINT:PRINT
120 PRINTTAB(10)"THIS IS A REAL TIME LUNAR LANDER SIMULATION.
130 PRINTTAB(10)"TO PLAY, MERELY ENTER THE POUNDS OF
140 PRINTTAB(10)"FUEL WHICH YOU WISH TO BURN BY TYPING A DIGIT (0-9).
150 PRINTTAB(10)"THE NINE GIVES MAXIMUM BURN, SLOWING YOU DOWN AT THE
155 PRINTTAB(10)"FASTEST RATE. A ZERO GIVES NO BURN AND LETS YOU FRE
160 PRINTTAB(10)"FALL.":PRINT:INPUT" READY...TYPE GO ";N$
190 PRINTCHR$(26):Y=4:X=28:GOSUB6000:PRINT"TIME TO FUEL EXHAUSTION"
200 X=20:Y=7:GOSUB6000:PRINT"BURN RATE"
220 X=50:GOSUB6000:PRINT"FUEL"
230 Y=8:X=20:GOSUB6000:PRINT(LBS/SEC)"X=50:GOSUB6000:PRINT"(LBS)"
240 Y=12:X=20:GOSUB6000:PRINT"VELOCITY":X=50:GCSUB6000:PRINT"ALTITUDE
250 Y=13:X=20:GOSUB6000:PRINT"(FT/SEC)":X=50:GOSUB6000:PRINT" (FT)"
260 Y=18:X=20:GOSUB6000:PRINT"ESTIMATED TIME TO LANDING "
270 Y=22:X=1:GOSUB6000:FORI=1TO79:PRINT"-";:NEXTI
275 Y=23:X=1:GOSUB6000:PRINT"O "
280 FORI=1TO7:X=10*I:GOSUB6000:PRINTI;:NEXTI
290 X=30:Y=24:GOSUB6000:PRINT"ALTITUDE (X10,000 FT.)":GOSUB6000
310 VE=-100:MT$=" ":FU=10000:AL=80000:DE=5:BU=32
320 FORT=1TO10000
330 IFT/2=ING(T/2)THENPRINTCHR$(7);
340 VE = VE+((BU-32)*25E8)/(25E8+AL*AL))
345 VE=INT(VE)
350 AL=AL+INT(VE/2)
360 IFAL<OGOTO3000
370 IFFU<500THENGOSUB2OOO
380 FU=FU-BU/2
385 IFFU<=OTHENFU=0:BU=0
390 IFBU<=OTHENB$="NO BURN":GOTO410
400 B$=STR$(INT(FU/BU))
410 X=38:Y=5:GOSUB6000:PRINTMT$:GOSUB6000:PRINTB$
420 X=21:Y=9:GOSUB6000:PRINTBU:X=50:GOSUB6000:PRINTFU
430 X=22:Y=14:GOSUB6000:PRINTVE:X=50:GOSUB6000:PRINTAL
440 IFVE>=OTHENA$="ESCAPE":GOTO460
450 A$=STR$(INT(AL/ABS(VE)))
460 Y=19:X=38:GOSUB6000:PRINTMT$:GOSUB6000:PRINTA$
4 6 1 ~ T A = I N T ( ( A L + 5 0 0 ) / 1 0 0 0 ) : I F T A > 8 0 T H E N T A = 8 0
4 6 2 ~ I F T A < 1 T H E N T A = 1 ~
4 6 3 ~ Y = 2 1 : X = T A + 1 : G D S U B 6 0 0 0 ~
4 6 5 ~ I F F U = O G O T O 5 0 0 ~
470 GOSUB5000:IFZ=13GOTO500
480 BU=12+4*(Z-48)
490 IFZ=48THENBU=0
500 FORTI=1TODE:A=SIN(10):NEXTTI
505 VP=VE:AP=AL
51O NEXTT
2000 FORJ=1TO2
2005 X=36:Y=12:GOSUB6000:PRINT"LOW FUEL"
2010 Y=13:GOSUB6000:PRINT"WARNING"
2020 A=SIN(10)
2030 GOSUB6000:PRINTMT $:Y=12:GOSUB6000:PRINTMT$
2035 A=SIN(10)
```

```
2040 NEXTJ
2050 DE=I:RETURN
3000 SP=(VP+VE)/2
3010 IFSP<-25GOT03200
3015 PRINT:PRINT
3020 PRINTTAB(20)"CONGRATULATIONS, YOU TOUCHED DOWN AT A MERE "
3030 PRINTTAB(30)SP;" FT./SEC. A SAFE LANDING !!!"
3040 PRINT:PRINTTAB(20)" DO YOU WANT TO TRY AGAIN AND"
3050 PRINTTAB(20)" ";:INPUT"PROVE IT WASN'T LUCK ";N$
3060 IFN$="N"THENRUN"BEXEC*"
3070 GOTO190
3200 PRINTCHR$(26)
3210 N=40
3220 FORI=1TON:X=1+INT(79*RND(I)):Y=l+INT(23*RND(1))
3225 GOSUB6000:PRINTCHR$(33+INT(15*RND(1)):GOSUB6000:NEXTI
3230 X=20:Y=10:GOSUB6000:PRINT"YOU JUST BLEW A CRATER,"
3240 Y=1l:GOSUB6000:PRINTABS(VE);" FEET IN DIAMETER,ON THE
3250 Y=12:GOSUB6000:PRINT"SURFACE OF THE MOON. BETTER TRY AGAIN...
3260 Y=14:GOSUB6000:INPUT" READY (Y/N) ";N$
3270 GOTO190
5000 Z=PEEK(64513)
5005 IFZ=13THEN RETURN
5010 IFZ>128THENZ=Z-128:RETURN
6000 PRINTCHR$(27);CHR$(61);CHR$(Y+31);CHR$(X+31);:RETURN
```


FOR PET, TRS 80, COMPUCOLOR.
 and instructions. Unit has volume control, earphone jack, connectors. 1 year warranty. $\$ 29.95$ for PET \& TRS-80. $\$ 39.95$ for Compucolor (includes diskette).
SOUNDWARE SOFTWARE FOR 8K PET!
Compatible with all CB-2 sound devices. Features sound, super graphics, instruction booklet. 90 day warranty.

1. ACTION PACK-Brealathru (8 versions)/Target/ Caterpillar
2. THE CLASSICS-Checkers (8 versions)/ Backgammon/Piano Player
3. WORD FUN-Spelier (4 versions)/Scramble/ Flashcard
$\$ 9.95$ per pack or 3 packs plus bonus program for $\$ 29.00$. More sound programs coming: TRS 80 and Compucolor, too!
To Order: Send to CAP Electronics, Dept M14, 1884 Shulman Ave. San Jose, CA 95124, or call (408) 371-4120. ViSA/Master Charge accepted. No charge for shipping when payment is included. Please add 15% for C.O.D. Calif. residents add 6% tax.
Prices subject to change without notice.
DEALER \& DISTRIBUTOR INQUIRIES WELCOME

apple II

We have the Most Complete Stock of APPLE and PET Software in Southern california. (Send for our catalog - $\mathbf{\$ 1 . 0 0)}$

16K RAM CHIP SET FOR APPLE II ONLY (Tested \& Burned In) ${ }^{\mathbf{\$}} \mathbf{9 5}^{\mathbf{0 0}}$

 WORKSHOPS: Call for detalls.- PET-3rd Saturday of the Month
- APPLE-4th Saturday of the Month
Reference Books For APPLE and PET OwnersProgramming the 65029.95
PET User Manual (New from Commodore) 9.95
First Book of KIM 8.95
MOS Tech Programming Manual (6502) 12.00
MOS Tech Hardware Manual 12.00

CLASSES: Apple Topics

We offer a series of classes on Apple II to aqualnt owners with some of the unique features and capabilities of their system. Topics covered are Apple Sounds, Low Res. Graphics, Hi Res. Graphics, Disk Basics, and How to Use Your Reference Material. Sessions are held every Thursday Night at 7:00 p.m.

HARDWARE

APPLE II HARDWARE:

- Upper \& Lower Case Board

Now you can display both upper and lower case characters on your video with the Apple II. Includes assembled circuit board and sample software
$\$ 49.95$

- Programmer Aide . 550.00

PRINTER SPECIALS FOR APPLE AND PET

- TRENDCOM 100 with interface for Apple or PET
$\$ 450.00$

LIMITED OUANTITY

Refurbished selectric typewriters serially interfaced for plug in
 All orders must be prepaid. Delivery in 4 to 8 weeks ARO or full refund.

- Anadex DP-8000 with tracter 8" paper width and Apple interface

S1050

- Centronlcs 779-2 for Apple II
with parallel interface
$\$ 1245.00$

JOIN THE APPLE COMMUNICATION NETWORK (APPLE COM-NET)

Computer Components of Orange County is initiating a communication network for all APPLE OWNERS. We need the help of dedicated Apple users. Become a CHARTER MEMBER of this APPLE TEAM by helping us set up this network. Contact Dave Smith or Dwain Graham 714-891-2584.

* *COMPLETE COMMUNICATION HARDWARE* * FOR YOUR APPLE ****\$379.00****
See if you qualify for a CCI Of OC P /F Card and get great discounts on selected purchases for your Apple and PET.

PET HARDWARE

- PET 2001-8 Computer Standard PET with integral cassette and calculator type keyboard 8 K bytes of memory (7167 net).
- PET 2001-16N Computer PET with 16K bytes of memory and large keyboard with separate numeric pad and graphics on keys. External cassette optional. (15,359 net)
- PET 2001-16B Computer As above but has standard typewriter kevboard. No graphic keys $\$ 995.00$
- PET 2001-32N Computer Identical to 2001-16N with 32K Dytes of memory. (31,743 net)............................. $\$ 1.195 .00$
- PET 2001-32B Computer identical to 2001-32B with 32K bytes of memory. (31;743 net)............................. $\$ 1,195.00$ PERIPHERALS
- PET 2021 Printer 80 column dot matrix electrostatic printer with full PET graphics capability $\$ 549.00$
- PET 2022 Printer 80 column dot matrix printer with plain paper or forms handling tractor feed. Has full PET graphics
- PET 2023 Printer 80 column dot matrix printer. Plain paper printer with full PET graphics. .
. $\$ 849.00$
- PET 2040 Dual Drive MInI Floppy Disk* Dual drive intelligent mini floppy system. 343 K net user storage capacity.
\$1,095.00
- PET 2041 SIngle Drive Floppy Dlsk Single drive intelligent mini floppy 171.5K net user storage . $\$ 595.00$
- PET External Cassette Cassette player/recorder to use with PET 2001/8/16/32.
$\$ 95.00$
- PET User Manual 160 page expanded user manual covering all facets of user operation, porogramming and $1 / 0$ for PET computers
*Retrofit kit required for operation with PET 2001-8.

WHY SHOULD YOU BUY FROM US?

Because we can help you solve your problems and answer your questions. We don't claim to know everything, but we try to help our customers to the full extent of our resources.
-Prices subject to change.-
GOMPUIER GOMPONENHS OF ORANCE GOUNTY 6791 Westminster Ave., Westminster, CA 92683 714-891-2584
Hours: Tues-Fri 11:00 AM to 8:00 PM-Sat 10:00 AM to 6:00 PM (Closed Sun, Mon)
Master Charge, Visa, B of A are accepted. No COD. Allow 2 weeks for personal check to clear
Add $\$ 1.50$ for handling and postage. For computer systems please add $\$ 10.00$ for shipping, handling and insurance. California residents add 6\% Sales Tax.

ASK THE DOCTOR -PART IV GOOD NEWS/BAD NEWS

Robert M. Tripp, Ph.D.
The COMPUTERIST, Inc.
P.O. Box 3

So. Chelmsford, MA 01824

In last month's issue I announced that Synertek Systems has informed me of an improvement to the SYM monitor which should solve the audio cassette sensitivity problem that 1 had mentioned in several columns. I have since received a copy of the new SYM-1 Supermon Version 1.1 on a pair of EPROMs (which I had supplied to them) and have had some chance to evaluate the new version. The documentation I received was in the form of a two page letter. Not having the monitor listing limited by ability to fully evaluate the changes.

The Good News

According to the letter only two minor hardware changes are required in the cassette circuit. This are similar to some reported independtly by other users and reported in an earlier column. "Change C16 to .22 microfarad" and "change 897 to $1 \mathrm{~K} \mathrm{ohm"}$.

This list of improvements that accompanied the V 1.1 monitor, along with my comments appears below. (The Synertek notes are in bold face. My comments are normal type.)

1. The Improved High Speed Cassette read/write is significantly better than before. I was able to write and read quite constantly and was able to produce a tape on one type of recorder and read it on another. The volume/tone range was much wider. Whereas before you had to be right on for any chance of success, now you can have a reasonable variation in volume and tone and still get a good read. This is particularly important when you are using different recorders with different characteristics. The two recorders I tested with were a Superscope C-190 and a Pioneer Centrex. These fairly high quality recorders have not worked reliably with the old V1.0 monitor. A suggestion I had made to Synertek back in June 1978 was to make the leader time variable. While the 8 seconds they had built-in in V1.0 is acceptable when you are only occasionally storing a program, it was much to long if you intended to use the tape service to save small chunks of data - mailing list information for example. The above note says that the leader time is now maintained in ram and can be changed by the user if necessary. Since I did not have the . listing or additional information, I was not able to test this out. But, assuming it does work, this can be a very significant improvement. some programs I have written require a lot of extra code simply to get around the "fixed" leader problem. They should be much simpler now, since I should be able to set the leader time in ram and then use the tape cassette routines directly.
2. KIM read. Read routine improved. This has been one of the biggest problems for the SYM-1 since it release. The V1.0 monitor had a simple, but powerful, bug. It made an invalid test for the KIM format "end-of-data" character, and treated the legal 3246 ASCII pair as an ASCII " $/$ ", thereby terminating prematurely whenever it encountered a " $2 F$ " in the data. This made the KIM format mode of the SYM-1 essentially useless. This has been fixed in the new version. This means that it is now possible to distribute software, data bases, source files, etc. between the KIM-1, SYM-1 and AIM 65 using the common KIM format.
3. Beeper frequency adjusted for maximum output. I'll take their word for this. It does sound a little louder, but then I had never had any trouble with the beeper in V 1.0
4. During the VERIFY command a BREAK key will stop printout without printing an error message. I didn't test this minor improvement, but it is nice to keep error messages for real errors.
5. BREAK key is looked for on current loop interface. If you are using a teletype device, it is handy to have the BREAK key work, so this change is definitely good.
6. Log-on changed to SY1.1. Yes.
7. After paper tape load the error message count is displayed. I do not have any paper tape facility to test this, but it is a minor improvement.
8. Ability to return to a higher lever program (left arrow). I do not quite understand what this is supposed to mean, but I am sure when additional documentation is available it will make sense.
9. Cassette file I.D. displayed on left digit seven segments. This is both cute and useful. They have simply taken the ID value and put it out on the leftmost digit. It does take a bit of deciphering though. The figure below shows the value of each segment on the display. These must be separately read and then added together to get the file ID. It is useful when you are searching the tape for a particular tape ID.
10. Unwrite-protect routine added to cassette logic. Again, I could not test this due to zero documentation.
11. Register name improvement on display during \mathbf{R} command. Hooray! Now the display shows the register name, not a "hard-to-remember-and-interpret" arbitrary number to identify which register you are examining. P for program counter; S for stack; F for flags; A for A register, to represent an X for the X register; and Y for the Y register. A simple but very nice improvement.
12. Debug-on will not cause ram to be write protected. I did not test this, but it sounds reasonable.

That's the good news.

The Bad News

The bad news isn't all that bad, but should be considered. First, the changes to the Supermon do move some code around and change some "internal" entry points. Although the Synertek programmer I talked to said that this was not going to be very important since the main entry points were not touched, I found the first program I tried to run, the SYNC generator from the Reference Manual, would not work since two of the routines it requires have moved. How great a problem will this be? It is difficult to guess. I haven't seen the listings and do not know what routines were changed and also do not know how often other programmers have used them directly. It will be a problem for anyone who is trying to make program for distribution since there may be a requirement for two versions - one for V1.0 and another for V 1.1 - and this adds to the expense and can cause distribution problems. Hopefully, the number of routines affected is small and isn't a big problem - but at present, "Who knows?".

Second, the V1.1 does use up some (most?, all?) of the Scratch Pad RAM in the System RAM. While this is not necessarily a big problem for future programs, it may cause problems for existing programs which use this previously available resource. Care will have to be taken when transferring programs from V1.0 to V1.1 to take this change in scratch pad availability into account.

Third, Synertek does not seem to have a policy yet for how the new V1.1 will be distributed. They are still waiting for feedback from myself and a couple of other users before committing to ROM, so it will be some time before any of the V1.1 are available at all. Then there is the question of systems already in the field or on dealer's shelves. Will there be a reasonable "exchange" policy, say Synertek's actual ROM production cost of $\$ 10-\$ 15.00$, or is some outlandish price going to be charged. I strongly feel that Synertek has the responsibility to offer the new V1.1 at the lowest price possible. Some of the changes they have made are not "cosmetic" or simple "improvements". They are basic "corrections" to their original 'flawed" V1.0.

SYM-1 Codes

Ever wonder what the various codes were that the SYM used: keycode, ASCII code, and display code? You can look them up in the SYM manual in various places, but, why not let the SYM itself generate a display of these codes. The following program is an aid in establishing the relations between the three different codes. Start the program at 0000 . The display goes blank, and when a key is depressed, the display will show key code, ASCII and display-scan code for a short time, and go blank again with a "beep".

Submitted by
Jan Skov
Majvaenget 7
DK-6000 Kolding
The Netherlands

SYM-1 CODE DISPLAY JAN SKOV FEBRUARY 1979

0000
DRG \$0000
SYM SUBROUTINES

0000		ACCESS	*	\$8B86	SYSTEM RAM ACCESS
0000		SPACE	*	\$8342	OUTPUT SPACE TO DISPLAY
0000		INCHR	*	\$8A1B	INPUT CHARACTER
0000		QUTCHR	*	\$8A47	OUTPUT CHARACTER
0000		OUTBYT	*	\$82FA	OUTPUT BYTE
0000		SCAND	*	\$8906	SCAN DISPLAY
0000		BEEP	*	\$8972	
0000	20868 B	START	JSR	ACCESS	
0003	A2 06		LDXIM	\$06	
0005	204283	LOOP	JSR	SPACE	
0008	CA		DEX		
0009	DO FA		BNE	LOOP	
000B	201 B 8A		JSR	INCHR	
OOOE	85 EF		STAZ	\$00EF	
0010	A9 2D		LDAIM	\$2D	
0012	20478 A		JSR	CUTCHR	
0015	A5 EF		LDAZ	\$00EF	
0017	20 FA 82		JSR	OUTBYT	
001A	AD 42 A6		LDA	\$A642	DISPLAY BUFFER
001 D	? FA 82		JSR	OUTBYT	
0020	-2 OB		LDXIM	\$0B	
0022	86 EE		STXZ	\$00EE	
0024	86 ED		STXZ	\$00ED	
0026	200689	LOOPA	JSR	SCAND	DISPLAY AND
0029	C6 ED		DECZ	\$00ED	TIMER LOOP
002B	DO Fg		BNE	LOOPA	
002D	C6 EE		DECZ	\$00EE	
002F	D0 F5		BNE	LOOPA	
0031	207289		JSR	BEEP	
0034	4 COO 00		JMP	START	

\$8B86
SYSTEM RAM ACCESS
0000
0000
0000
0000
0000
$\begin{array}{llllll}0000 & 20 & 86 & 8 B & \text { START } & \text { JSR }\end{array}$
0005204283 LOOP JSR SPACE
0008 CA
0009 DO FA
OOOB 20 1B 8A
OOOE 85 EF
0010 A9 2D
00122047 8A

001A AD 42 A
001D ?.0 FA 82
0020 ~2 OB
002286 EE
002486 ED
STXZ \$OOEE
STXZ \$OOED
JSR SCAND
DECZ \$OOED
BNE LOOPA
DECZ \$OOEE

JSR BEEP
JMP START

THE MICRO SOFTWARE CATALOG: VIII

Mike Rowe
P.O. Box 3
S. Chelmsford, MA 01824

Name: Missile-Anti-Missile
System: Apple
Memory: 16K
Language: Apple II Soft
Description: Simulated missile attack on 3-D Map of USA
Copies: 30
Price: $\mathbf{5 9 . 9 5}+\mathbf{\$ 1 . 0 0}$ postage $\&$ handling
Includes: Cassette with instructions
Author: T. David Moteles \& Neil Lipson
Available from:
Progressive Software
P.O. Box 273

Plymouth Mtg., PA 19462

Name: DISK DUMPIRESTORE
System: Apple II with disk
Memory: 32K (min)
Language: Applesoft II and machine language
Hardware: Apple II, Disk II
Description: A disk-tape utility to dump and restore all Integer, Applesoft II, and Binary programs automatically. The program names.
Binary program addresses, and all commands necessary to re-load
the programs from tape and restore them again to disk under their
original names are stored on tape header file.
Copies: Just released
Price: $\mathbf{\$ 8 . 0 0}$
Includes: Cassette and instructions
Author: Alan G. Hill
Available from:
Alan G. Hill
12092 Deerhorn Dr.
Cincinnati, Ohio 45240

Name: NOT ONE

System: KIM
Memory: 1K
Language: Assembly
Hardware: Bare Kim!
NOT ONE is an exciting, fast moving game of skill, strategy, and change for one to five players (including KIM). The game is designed for use with KIM's onboard display and hex pad.
Besides being an entertainment game, the NOT ONE package was designed to introduce some powerful general-purpose output manipulation subroutines for the KIM's LED display. These include variable-speed, scrolled alpha-numerics!
The manual also discusses LED segment codes in an effort to increase the user's knowledge of the display.
Author: Steven Wexler
Price: $\mathbf{\$ 1 5 . 0 0}$
Includes: Source listing, manual, and cassette
Available from:
SJW, Inc.
P.O. Box 438

Huntingdon Valley, PA. 19006
The 6502 Program Exch.
2920 Moana
Reno, NV. 89509

Name: A Forth System
System: Apple II
Memory: 24K or Larger
Language: 40\% ASSEMBLY, 60\% Forth
Hardware: Disk II
Description: A unique software package for software buffs and serious programmers who have gotten tired of programming in integer basic and machine language. FORTH is an extensable language, allowing the programmer to "define" new dictionary entrys that use previous entrys. Most of FORTH is written in FORTH. Benchmarks show that FORTH executes 20 times faster than BASIC. Included in the package are:

1) Powerful screen editor for system development.
2) Decompiler - used to generate to some extent a source listing. It can be used to list our portions of FORTH itself.
3) Utility package - dump, disk maintenance etc. does not use apple II dos.
4) Completely documented using a special disk retreival system. includes some programming examples. Editor, decompiler is available on source.
Copies: Just Released
Price: $\mathbf{\$ 3 9 . 9 5 + \text { tax } \text { for california residents }}$
Includes: One mini diskette + manual
Author: John T. Draper
Available from:
Captain Software
PO Box 575
San Francisco, CA 94101
Name: Function Graphs and Transformations
System: Apple II
Memory: 16K minimum if Applesoft is in ROM, otherwise 32K minimum

Language: Applesoft (floating point Basic)

Hardware: No special hardware
Description: This program uses the Apple II high resolution graphics capabilities to draw detailed graphs of mathematical functions which the user defines in Basic syntax. The graphs appear in a large rectangle whose edges are X and Y scales (with values labeled by up to 6 digits). Graphs can be superimposed, erased, drawn as dashed (rather than solid) curves, and transformed. The transformations available are reflection about an axis, stretching or compressing (change of scale), and sliding (translation). The user can alternate between the graphic display and a text display which lists the available commands and the more recent interactions between user and program. Expected users are engineers, mathmaticians, and researchers in the natural and social sciences; in addition, teachers and students can use the program to approach topics in (for example) algebra, trigonometry, and analytic geometry in a visual, intuitive, and experimental way which complements the traditional, primarily symbolic orientation.

Copies: Just released

Price: \$14.95 (Cat. No.: AHE0123)
Includes: cassette tape, 12-page instruction booklet
Author: Don Stone
Available from: many computer stores or
Powersoft, Inc.
P.O. Box 157

Pitman, NJ 08071
(609) 589-5500

Name: 6502 VDR

Systems: Any 6502 with room available at $\$ 200$ or \$DD00
Memory: $1 / 2 \mathrm{~K}$
Language: 6502 machine code
Hardware: Memory-mapped video board such as Polymorphic Systems VTI, Solid State Music VB-1B, Etc.
Description: Organizes memory-mapped display for teletype-like use including automatic scrolling, line wrap-around, clear screen commands, etc.
Copies: 30
Price: $\mathbf{\$ 9 . 5 0}$ plus $\mathbf{\$ 1}$ shipping
Includes: Operating Manual, detailed configuration information, and complete commented source listing.
Order: Package includes KIM compatable tape cassette with both $\$ 200$ and \$DD00 versions included. Charge cards, phone and mail order accepted.
Available from:
Forethought Products
97070 Dukhobar \#D
Eugene, Oregon 97402

Name: CHEQUE - CHECKTM

System: PET
Memory: 8K
Language: BASIC, with machine language subroutine
Hardware: PET 2001-8 (or 2001-16/32 on special order)
Description: CHEQUE-CHECK reduces the probability of error in reconciling bank statement and checkbook, even for those experienced in the art. More important it greatly reduces the time required to find and correct an error when one does occur, because it "remembers" individual entries for later review and modification if necessary. Designed and tested for ease of use, CHEQUE-CHECK is suitable for novice or expert, and requires no tape files or knowledge of programming. Reviewed in May 1979 issue of Robert Purser's Reference List of Computer Cassettes
Copies: $\mathbf{6 0}$ sold in first three months.
Price: $\mathbf{\$ 7 . 9 5}$ (quantity discount available)
Includes: Cassette in Norelco style box, Description and operating instructions, zip-lock protective package.
Designer: Roy Busdiecker
Available from: Better computer stores or directly from
Micro Software Systems
P.O. Box 1442

Woodbridge, VA 22193

[^0]Name: Generalized File Management
System: APPLE II
Memory: 16K

Language: Integer Basic

Hardware: APPLE II, DISK II
Description: This package allows you to create, update, and print disk files. The names of fields and files, number of fields, individual field lengths, and file size is user defined. You can decide what headings you want to see (if any) when you print or display and record or the entire file. You can use this package to create such files as: Parts lists, phonenos., List of birthdates, name and address, and whatever...

Copies: Just released

Price: $\mathbf{\$ 1 6 . 5 0}$

Includes: Diskette that contains two programs, some sample file useages (birthdates, parts list), and a user manual
Author: Lee Stubbs
Available from:
Les Stubbs
23725 Oakheath PI. Harbor City, Ca 90710

Name: WEAVER

System: Apple II
Memory: 32K
Language: Integer Basic
Hardware: Disk II
Description: WEAVER simulates as multi-harness loom with control of warping, hook-up and treadling. Weaving drafts of 40 threads of warp and 40 threads of weft are drawn in 15 colors for patterns requiring up to 24 harnesses. Weaving patterns are saved and called by name from disk storage. The user-interface is designed for easy and efficient use by a weaver. Nine pages of documentation include a glossary of commands which defines the functions of the program and a sample draft with descriptive data entry.
Copies: New program.
Price: $\mathbf{\$ 1 5 . 0 0}$ on cassette tape, $\mathbf{\$ 2 0 . 0 0}$ on diskette with five sample drafts.
Author: Bruce Bohannan
Available from:
Bruce Bohannan
2212 Pine Street
Boulder, CO 80302
Name: Address and Perpetual Calendar
System: APPLE II
Memory: 32K
Language: Applesoft II
Hardware: APPLE II w/Disk II
Description: This program maintains your master address file on disk. User follows a master menu to add or change names, look for specific names or review entire file (or part) name by name. All outputs are formatted. Look and change records with a search function i.e.; If you do not remember how to spell a name then enter the number of letters you do know and the program will walk you through all names beginning with what you entered until you find the one you want. A birthday function is included that will search your entire file and list all names, birthday and age for any given month. A special feature loads up a Perpetual Calendar program that will display any month (formatted) between the years 1704 and 2099 and highlights any particular day. Return to address program is optional
Copies: Just released.
Price: 15.00 ppd
Includes: Disk and instructions
Author: Edward S. Kleitches
Available from:
Edward S. Kleitches
7207 Camino Grove
San Antonio, Texas 78227

INSIDE THE KIM TTY SERVICE
Ben Doutre
621 Doyle Road
Mont St-Hilaire, Quebec
Canada J34 1M3

The fact the KIM's serial TTY port, plain and unmodified, will operate comfortable at 9600 bauds does not seem to be widely known. 1, for one, went the parallel interface route as soon as I acquired a higher speed terminal, and I suspect that many others may have done likewise. After all, what can one expect of an interface described in the User's Manual in these terms: "You are not restricted to units with specific bit rates (10 CPS for TTY) since the KIM-1 system automatically adjusts for a wide variety of data rates (10 CPS. 15 CPS. 30CPS. ETC.(. "That's pretty wide, alright, from 10 to etc. Other writers have been equally vague. Cary Tater in MICRO 9:14, "A Fast Talking TIM" mentions that "KIM can adapt to terminal frequencies up to 2400 baud...". This was the last straw, and I either had to pull the plug on my "Fast Talking KIM". or attempt to put the record straight
First off, let me say that according to my interpretation of what goes on in KIM, the theoretical maximum baud rate of the TTY port is 15,625 . How's that for pinning down the etc? Not that you should try to operate at this rate without some of the well-known "fine tuning", but there is no reason why you can't hook up your 9600 or 4800 baud terminal, with 30 cents worth of gates, and be up and running, with or without reading the following details. If you want to know from whence this bonanza, here is the story.

The smarts for the KIM TTY interface are in the monitor software, so let's start at that end. There are two main TTY I/O routines: GETCH at 1E5A and OUTCH at 1EAO. CETCH returns with the character in A but strips off the parity bit in the process. If you need bit 7 (counting from 0) for your own deep, dark reasons, then retrieve the full character from CHAR at OOFE on your return. OUTCH (love that label!) outputs a stop bit, then a start bit, then 8 data bits (L.SB first), then another stop bit. It may seem illogical to start with a stop, but remember that, aside from slow machinery, the main purpose of a stop bit (line high) is to make sure that the start bit (line low) will be recognized. In any case, the stop interval is 2 bits long plus the delay between calls to OUTCH.

Both GETCH and OUTCH are timed by subroutine DELAY, at* IED4. (CETCH also used DEHALF to move its strobe to the mid-point of a bit interval, but let's not get technical.) DELAY does its thing based on the contents of a 16 -bit counter named, for some obscure reason, CNTH30 (high byte, at 17F3) and CNTL 30 (low byte, 17F2). If this counter is equal to 0000 or less, DELAY falls through all the way, with a resulting minimum bit time of 64us. (Let's assume your crystal is bang-on 1 MHz .) Presto: devide 64us into a million, and you come up with 15,625 baud.

Not convinced? OK, here's more. Every time we add one to the counter, DELAY adds another 14 us to its timing loop. The high end of the baud scaie looks like this:

Counter

0000	64
0001	78
0002	92
0003	106
0004	120

0004

Baud Rate
15,625
12,820
10,869
9,434
8,333

If we turn this around and start with some of the usual standard baud rates, we can calculate the bit times and counter values required. For instance, 9600 bauds obviously needs something betweem 2 and 3. DELAY doesn't do fractions - it doesn't even like odd numbers. And how does the counter get properly loaded anyway'?
We've left the best to the last, a little jewel called DETCPS at 1C2A. DETCPS is entered following a system reset with TTY enabled. Its brief hour of glory is in measuring the duration of the start pulse of the first character you feed in after a Reset. It quickly stuffs the results in the 16 -bit counter, then goes out for coffee until the next Reset. The question is: will DETCPS buy 9600 bauds? The answer is YES. albeit a little reluctantly. The thing is the DETCPS is sampling the input port, waiting for the line to go low - it checks for this every 9 us, so it could miss your start pulse start by this much. Once the line is low, it squirrels away 14 us counts, checking for line high every 14 us. So it could miss the end of your start pulse by 14 us.
At 10, 15, 30 or etc CPS. this sloppiness is probably acceptable. With a Model 33 on the line, DETCPS gaily reports 02C2 plus/minus $O B$, for instance. But if it comes up with 0004 instead of 0003 at 9600 bauds, your TV screen will give you a reasonable facsimile of a Chinese fortune cookie slip. Just look at it as another Butterfield game - Reset-Delete-Reset-Delete-Reset-Delete BINGO! Anyway, how many times a day do you Reset? Once you get that 3 , your link with KIM will be rock solid.

There are a number of facinating details, but I will spare you the pyrotechnics. If all this is on the leve, I should be able to prove it, right? Well, I have an ESAT-100 (RHS Marketing) video board equipped with an AY3-1015 UART hooked up to the KIM TTY port. The manual admits to a -1% to DETCPS. I set the speed selector switch to each of the 6 rates available, did 10 resets at each and recorded the counts. (A clever piece of programming, at that!) Except for 9600 , all resets were $O K$ the first time around. The counts did not vary, except for 300 baud. The results look like this:

Baud Rate	Bit Time (us)	Calc. Count	Meas'd Count
9600	104.2	0003	0003
4800	208.3	000 A	000 B
2400	416.7	0019	001 A
1200	833.3	0037	0038
600	1666.7	0072	0074
300	3333.3	00EA	$00 E C / 00 E D$

A few further words of explanation for the fellow who may be hung up because he has been spared intimate relations with "real" TTY machines. (You experts can go figure out an algorithm or two - try infinite recursion on "Every rule has an exception, except this one.")

Referring to the KIM-1 User's Manual, Fig. 3.7, you will see two KYBD lines and two PTR lines. The action at the other end of these lines is assumed to be as foliows: - During idle conditions, the keyboard lines are shorted out, generating a continuous high at the input to Q7; the printer lines are connected to a "selector magnet" (quaint) or a relay which is drawing a nominal 20 mA . -when the keyboard is sending characters, the KYBD lines are open-circuited for zero bits and shorted for one bits. When KIM sends characters on the PTR lines, it opens the circuit for zero bits by floating the output of O/C gate U26 (7438), and closes the circuit for one bits by pulling U26 to ground. Incidentally, this 7438 can sink up to 48 mA .
If you want to simulate this hardware with some other device, you need to feed the line labelled "TTY KYBD" with positive logic signals (low for ones, open for zeros) from the line labelled "TTY

PTR". You should note that the keyboard line has a 220 -ohm pull down resistor on it, and that the printer line has no pull-up.

You may also notice, if your terminal has a FDX/HDX selector switch or jumper, that the FDX no longer works as advertised. This is just KIM trying to be helpful, with a wired-in interconnect which echos received characters on the output line. If this keeps you awake at night, cut the trace between pin 11 and U15 and pin 10 of U26, and connect pin 10 of U26 to Vcc. (I haven't tried it, but it should work. I'm a sound sleeper.)
If you need a for-example, I show a diagram of my own interface logic, based on a 7406 gate package, which is working quite satisfactorily. There are probably 1000 other ways of doing it, each one of which can be improved by SuperSilicon. If it works and doesn't smoke, have at it.

Industrial/commercial grade quality: 100 hour high temp burnin: low power: KIM bus compatible pin for pin: super quallity 8 rellability at below S-100 prices (COMMERICALLY rated S-100 boards cost $25-75 \%$ more). When you expand your system, expand
with the bus optimized for 8 blt CPU's, the Commodoremos with the bus optimized for 8 bit CPU's, the Commodore/Mos
Technology $22 / 44$ pin KiM bus, now supported by Synertek. MTU. Rockwell International, Problem Solver Systems, HDE, the Comput. erist, RNB. and others!

KIM-1 computer $\$ 179.00$: KIM-4 Motherboard $\$ 119$: power supply for KIM-1 alone-s45: enclosure for KIM-1 alone \$29: HDE protolype board with requlator, heatsink, switch address 8 decoding
logic included $\$ 49.50$ book "The First Book of KIM" $\$ 9.95$: book logic included \$49.50: book "The First Book of KIM" S9.85: book DEAL: KIM-1, power supply, BOTH books listed above. ALL for 209!

HDE FILE ORIENTED DISK SYSTEM (FODS) FOR KIM BUS COMPUTERS Make your KIM (or relative) the best 6502 development system available at any price. Expand with HDE's full size floppy system with FODS/Editor/Assembler. 2 pass assembler, powerful editor compatible with ARESCO files KIM bus interface card: fast 6502 controller handles data transfer at maximum IBM
single density speed for excellent reliability: power supply for 4 drives: patches to Johnson Computer/Microsoft BASIC. 45 day delivery. Single drive- $\$ 1995$ dual drive $\$ 2750$

Shipping extra uniess order prepaid with cashier's check ALL items assembled, tested, guaranteed at least 90 days.

PLAINSMAN MICRO SYSTEMS [div. 5C Corporation]
P.0. Box 1712, Auburn, Al. 36830: [205]745-7735

3803 Pepperell Parkway, Opelika
[1-800-633-8724] Continental U.S. except AI.
Deaters for OSI, COMMODORE, COMPUCOLOR,
VIF
ALTOS

Software avalleble for F-8, 6800, 8080, 8085, 2-80, 6502, KIM-1, 1802.

The EP-2A-79 will program the 2704, 2708, TMS 2708, 2758, 2716. TMS 2516, TMS 2716, TMS 2532, and 2732. PROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC, $50 / 60 \mathrm{HZ}$ at 15 watts. It is supplied with a 36 -inch ribbon cable (14 pin plus) for connecting to microcomputer. Requires $11 / 21 / O$ ports.
Assembled and tested $\$ 145$, Plus $\mathbf{\$ 1 5 - 2 5}$ for each personality module. Specify software.

THE INTEGER BASIC TOKEN SYSTEM

 IN THE APPLE IIFrank D. Kirschner
2643 Rockledge Trail
Dayton, OH 45430

There are two primary methods of storing BASIC programs in microcomputers. One involves storing the entire program, letter by letter and symbol by symbol somewhere in memory, and interpreting the ASCII codes on execution. This is typical of BASIC compilers and some interpreters, like the TRS-80 Level 1. A more memory-efficient system uses tokens, eight bit bytes each of which represent a BASIC word or symbol. The TRS-80 Level II uses this method, as does the Apple II, to which the examples which follow apply.
When in Integer BASIC, the Apple stores characters as they are entered in a character buffer (hex locations 0200 to 02FF). When "return" is entered, BASIC "parses" the entry (that is, interprets the ASCII characters and breaks the instruction into executable parts). It determines what is a command, what are variables, data and so forth. If it is legal and is preceded by a number between 0 and 32767 (a line number), it stores it in memory in a fashion discussed below. If there is no line number, it simply executes the command and awaits further instructions.
The way the programs are stored is quite clever. When BASIC is initiated (control B or E 000 C from the monitor) several things happen. First, the highest available user memory (RAM) is stored in memory locations 004C (Lo byte) and 004D (Hi byte), called the HIMEM pointer. Also, locations OOCA and $00 C B$, the start-of-program pointer, get the same numbers, since there is no program as yet. As program steps are entered, they are stored starting at the top of memory, highest line numbers first, and the start-of-program pointer is decreased accordingly. See Figure 1. When a line with a higher number than some already in memory is entered, they are shuffled to preserve the order. One application: if you enter a program and then hit control B , the program is not scratched (or erased); only the start-of-program pointer is affected. Since powering up the Apple fills the memory with a pattern of ones and zeros (it looks like FF FF 0000 ...) from the monitor, it is easy to find the start of the program and then manually reset CA and CB to that location.
This is the way program instructions are stored in memory: (All numbers are in hex)

Number of bytes in BASIC line (also, one less than the number of bytes from the beginning of the next line.

Figure 2

As an example, power up the Apple, bring up BASIC, and enter 100. PRINT 0,50

Enter the monitor (by pushing "reset"), and then examine the program by entering

EXAMPLES FOR
16K Apple

Figure 1

Memory Map for Program Storage

3FF4.3FFF return
(Locations for a 16 K Apple. Subtract 2000 hex for a 4 K or add 4000 hex for a 32 K Apple.) You will see this:

3FF4-0C 640062
3FF8-B0 000049 B5 320001
which means:
OC
6400
62

01

There are 12 bytes in this line
It is line 100 (Decimal)
PRINT (see Table 1 for complete list of tokens
The next two bytes are a number (rather than tokens)
The number 0
The comma in a PRINT statement
Another number follows
The number 50
End of BASIC line

To demonstrate the use of this information, return to BASIC and try to enter the following BASIC line:

100 DEL 0,50
You will get a syntax error, because the Apple Interpreter does not allow the command DEL in deferred execution mode. Now do this: reenter the monitor and change the 62 (PRINT) to 09 (DEL) and the 49 (,for PRINT) to OA (, for DEL) by entering

3FF7: 09 Return
3FFB: 0A Return
Reenter BASIC (control C) and list. Try this instruction by adding lines between 0 and 50 , running the program, and then listing it. This allows you to write a program which will carry out some functions only the first time it is run and then automatically delete those lines.
In addition to inserting instructions which cannot be entered as deferied commands, you can modify the program under program
control. As an example, here is a program which will stop and start listing a long program by hitting a key on the keyboard.
Bring up BASIC.
Enter: 257 LIST 0: RETURN
HIT RESET, 3FF6.3FFF RETURN
You will see
3FF6-0A 01
3FF8-01 74 B0 000003 5B 01
What this means:
3FF6: 0A Ten bytes in line
3FF7,8: 0101 LINE 257
3FF9: 74 TOKEN FOR LIST
3FFA: B0 Means "Number follows"
3FFB,C: 0000 LINE TO BE "LISTED" (LO, HI)
3FFD: 03 TOKEN FOR COLON
3FFF: 01 End of BASIC LINE
Now enter 3FF7: FF FF Return
Cont. C, List
You have 65535 LIST O: RETURN
Now enter
$100 \mathrm{X}=\mathrm{PEEK}(-16384)$: POKE $-16368,0: 1 \mathrm{~F}$
X 127 THEN 0: COTO 100
Reset, 3FCF.3FFF Return
Change line no. from 100 to 65534 by entering 3FDO; FE FF Return Change COTO 100 to COTO 65534 by entering 3FF3: FE FF Change the 0 in "THEN 0 " to 65533 by entering 3FEE: FD FF In like manner, enter these remaining steps: (Under each number which has to be entered through the monitor, the Hex equivalent, in reverse order as it must be entered, appears)
65533 I = 1 PEEK (1): IFI>PEEK (76)
(FD FF)
$256 *$ PEEK (77) THEN END: COTO
65531
(FB FF)
$65532 X=$ PEEK (-16384):POKE $-16386,0$:
(FC FF)
IF X 127 THEN 65534
(FE FF)
65531 POKE 16374, PEEK (I t1): POKE 16380
(FB BB)
PEEK (1+2): GOSUB 65535
(FF FF)
32767 1=PEEK (202) 256* PEEK (203)
The steps must be entered in reverse order (i.e descending line numbers) because the interpreter orders them by their number when entered, and will not re-order lines when the numbers have been changed through the monitor.

The reason for making all these line numbers very high is so the applications program will fit "under" the list program.
Now, in the monitor, move the start of program and HIMEM pointers below the program:

$$
\begin{aligned}
& \text { 3A: } 49 \text { 3F Return } \\
& \text { 4C: } 49 \text { 3F Return }
\end{aligned}
$$

Hit control C and list. Nothing is listed. The program has been stored in a portion of memory temporarily inaccessible to BASIC. Load your applications program, make sure all the line numbers are less that 32767 , and change HIMEM through the monitor (4C: 0040) and execute RUN 32767. The program will list until you hit a key and then resume when you hit a key again. It uses the fact that each line begins with the number of bytes in the line followed by the line number. Numbers of successive lines are found and "POKE into the appropriate location in line 75535 , which then lists each line
Using these methods you can exercise considerably more control over the BASIC interpreter in your microcomputer.

CLASSIFIED ADS

ZIPTAPE loads 8 K BASIC in 15 seconds! Slower than a speeding disc? Sure, but it only costs $\$ 22.50$ plus $\$ 1.00 \mathrm{~S} \$ \mathrm{H}$. $\$ 3.00$ extra for software on KIM cassette. Described in MICRO No. 6. SASE for info. Lew Edwards, 1451 Hamilton Ave., Trenton, NJ 08629.

QUALITY SOF TWARE for the PET ...
Cheque-Check (best balancer!) \$7.95
Metric-Calc (RPN, with conversions) \$7.95
Mem-Explorer (learn PET details) \$7.95
Billboard ("Times Square" message of choice)
$\$ 49.95$. Send check or money order to MICRO SDF TWARE SYSTEMS, Dept M479, P.O. Box 1442, Woodbridge, VA 22193. VA res. add 4\% sales tax.
COVER-IT-UP! But - let the beauty of KIM-1 show through! Attractive, functional plexiglass enclosure protects KIM-1. Assembles in minutes with a screwdriver. Postpaid, only \$14.95. Guaranteed! Send check today: Cover-It-Up, 2120 N.W. 113, Okla. City, OK 73120.

Tabular Four-Way Number Conversion program for 16 K Apple II. 20 lines of hex, decimal, octal, or binary numbers. Includes editing features, documentation. \$3.50. Microspan Software, 2213A Lanier Dr., Austin, IX 78758
ADVERTISE IN MICRO FOR ONLY $\$ 10.00$! A classified ad such as the one above, may be run in this section for only $\$ 10.00$. Ad should not exceed six typed lines (we may have to cut longer ads "down-to-size) and only one ad per person or company per issue. Ad must relate to 6502 type stuff, and ad must be prepaid. Your ad will reach over 6000 readers - immediately !!!

APPLE II INTEGER BASIC TOKENS

BASIC COMMAND OR FUNCTION HEX TOKEN

ABS	31	
(3F	
)	72	
ASC 1	3 C	Includes left paren.
)	72	
"	28	first quote
"	29	second quote
AUTO	OD	
,	0A	
CALL	4D	
CLR	OC	
COLOR $=$	66	Includes $=$
CON	60	
DEL	09	
,	0A	
DIM	4F	Numeric Arrays
1	34	
)	72	
DIM	4 E	String Array
1	22	
)	72	
\$	40	
DSP	7 C	Numeric Variable
DSP	7B	String Variable
END	51	
FOR	55	
=	56	
TO	57	
STEP	58	
COSUB	5C	
COTO	5 F	
GR	4C	
HIMEN:	10	Includes:
HLIN	69	
	6A	
AT	6B	
IF	60	\because
THEN	24	When followed by a line no.
THEN	25	When followed by GOSUB or a basic operation
INPUT	54	Numberic Variable
INPUT	52	String Variable
INPUT	53	Input if followed by ...
,	27	
"	28	first
"	29	Second
IN \#	7F	Includes \#
LEN (3 B	Includes (
LET	5E	
LIST	74	
	75	

BASIC COMMAND (CONT)

LOAD	04	
MAN	OF	
NEW	OB	
NEXT	59	
	5A	
NO DSP	79	-
NO TRACE	7A	
PDL	32	
1	3F	
)	72	
PEEK	2E	
3 F	$($	
72)	
PLOT	67	
,	68	
POKE	64	
	65	
POP	77	
PRINT	63	If used alone
PRINT	62	Numeric Variable
:	46	
,	49	
PRINT	61	String Variable
"	28	First
"	29	Second
PR \#	7 E	Includes \#
REM	5 D	
RETURN	5B	
RND	2 F	
$($	3F	
)	72	
-	36	
SAVE	05	
SCRN 1	3 D	Includes (
,	3 F	
)	72	
SGN	30	
(3 F	
)	72	
TAB	50	
TEXT	4 B	
trace	7 D	
VLIN	6 C	
,	6 D	
AT	6 E	
VTAB	6F	
:	03	
$=$	71	In assignment
AND	1D	
OR	1 F	
MOD	1F	
NOR	DE	

PROGRAMMING THE 6502
by Rodney Zaks

Reviewed by
John D. Hirsch
Berme Road
Kerhonkson, NY 12446

In the introduction to this book the author tells us it can be used by a person who has never programmed before. Chapter one does begin with a clear presentation of some basic techniques, such as binary arithmetic. But the quality of the book rapidly degenerates in succeeding chapters, which read as though they had been assembled from manufacturer's literature and other sources, with more help from a paste-pot than a pencil.
The quality of the writing is technical-manualese and the illustration have the same mechanistic flavor. Also the illustrations and writing are sometimes only tenuously related.
A novice programmer would probably give up along about Chapter 3 , when assembly language routines are introduced even though assembly language is not explained until near the end of the book. The organization of the book has a certain random quality. For instance, integer addition, subtraction and multiplication are explained in some detail in the chapter on basic programming techniques, and then division is relegated to one paragraph while the chapter goes on to a very general explanation of subroutines. The experienced programmer will not find the book very helpful either. A good chunk of the book is taken up by reprinting 6502 instructions, one per page, and potentially valuable chapters-such as the one covering $65^{\prime} x x$ interfacing chips-are very perfunctory. Dr. Zaks has the annoying habit of constantly referring the reader to manufacturer's data sheets for more details
Chapter 9, covering data structures, is particularly puzzling. It covers data structures in a general way, with practically no information on how ther can be implemented in 6502 assembly language. Perhaps the author intended this chapter for one of his other introductory computer books and pasted it in this one by mistake.
The publisher of this book has produced a good many other books which were nither authored or ro-authored by Dr. Zaks, all in a remarkably short time. Reading this book, it's easy to see how the trick is done.
The 6500 family software manual and Caxton C. Foster's charming introductory work PROGRAMMING A MICROCOMPUTER: 6502 (Addison-Wesley) are still the best texts for learning to program in 6502 machine or assembly language.

[^1]AJN PLOS'm ENCLOSURE with builtin POWER SUPPLY
SPECIFICATIONS: INPUT: 1101220 VAC 50160 Hz OUTPUT: + 5V © 5A +24 V (1t 1A
GROUNDED THREE-WIRE LINE CORD ONIOFF SWITCH WITH PILOT LIGHT Enclosure has room for the AIM and one additional board: MEMORY PLUS or VIDEO PLUS

AIM PLUS: $\$ 10000$ AIM and AIM PLUS: $\$ 47500$

MOTHER PLUS: $\$ 80^{00} \quad$ fullyassembled and tested
 AIMISYMIKIM
 8K STATIC RAM POWER
Sockets for 8K Eprom 6522 1/0 Port on board regulators
EPROM
PROGRAMMER 1200° MEMORY PLUS: \$2406

FULLY ASSEMBLED AND TESTEO

P.O. Box 3, So. Chelmsford, MA 01824 617/256-3649

Chuck Carpenter
2228 Montclair Place
Carroliton，TX 75006

Renumbering Applesoft programs suddenly became possible．The resequence program in Jim Butterfield＇s＂Inside Pet BASIC，＂ （MICRO 8：39）solved the problem．

After clearing up a minor problem in the program（with help from lim ）I tried it on a 200 line program．Because of the way 1 started numbering in the first place，I had to fix－up about a dozen lines． But，I never would have gotten through that much renumbering otherwise．

As Jim mentioned in his letter to me，a machine language program would have ran a whole bunch faster．With DOS and having to find a place to locate such a program，the BASIC approach may be easier．

Here are some comments on the Applesoft version shown in Listing 1 ：
－Line 60005 has some prompting inputs to set－up the program．
Use RUN 60005 to start renumbering．
－Line 60060 brances to a DELete line．
－Line 60160 is changed to a point to the line no．in Applesoft （2049 or \＄801）．
Note：These are the pointers for Applesoft ROM
－Line 60160 was also changed to allow starting at any line number（ $\mathrm{M}=\mathrm{LN}$－IN）．
－Line 60170 changed to allow any numbering increment（ $M=M$ tiN）．

```
                                    q:
                                    GHEL
                                    GQ- ：＋：
\begin{tabular}{|c|c|}
\hline LIE & ま日， \\
\hline ETH &  \\
\hline LIP & まだ心 \\
\hline ETF & 朿年 \\
\hline EEE & \\
\hline LIIH & 中59 \\
\hline EET： & \＃ます！ \\
\hline ETH & ま兩 \\
\hline LIFi & 主耍H \\
\hline SEL： &  \\
\hline STH & 中家 \\
\hline FTE & \\
\hline LIH & ませた。 \\
\hline ETH & 中心宁 \\
\hline LIM &  \\
\hline ETH & ギG \\
\hline SF： & \＄14Fこ \\
\hline FTS & \\
\hline \(\cdots\) & \\
\hline \(\because\) & \\
\hline
\end{tabular}
```

－Line 60220－tokens changed for Applesoft（this information is in the Applesoft II manual）．
－Line 60260 and 60270 added to delete the renumber program and end it．
To make using the program easier，an append program（also for ROM）does the job．The assembly language program shown in listing 2 links the two programs together．You only need to do this if you want to renumber＇an existing program．（You can still load the renumber program before you start a new program．）Here＇s how you use it．
－Load the append program first．It fits in page 3 starting at \＄3A5．
－Load the lower line no．Applesoft program．
－Type Call 933 and（return）．
－Load the higher line no．renumber program．
－Type CALL 955 and（return）．
Use RUN 60005 to start renumbering．

Be sure to record any output that appears on the screen．Write down the information and check the renumbering on the lines indicated．Putting longer line numbers in short spaces will be one message．Another will ask you to check where you used a THEN for a COTO．The renumber program is not sure if it should renumber a line or a parameter．

My thanks to Jim Butterfield for providing us with such a useful program（and helping me get this one running）．Also，thanks to Bob Matzinger from the Dallas Area Apple Corps tor some modification suggestions and the Applesoft ROM append routine．

Listing 2

Applesoft append program．This program can be used to append any two programs together．

LIST

```
EM|E|E EHII
```



```
HFUIT "FIFST LIHE # - ":LH: FFIHT : IHFUIT "INORENEN
T - ":IH
```



```
: FOF F = 1 TO 1EG: GOGIE EGE1Q
G000 IF I% THEH GOGUE GH0GE: HEMT F
```



```
    Z5G): FOHE A - 1:N - N + zes
```



```
E EG1TG: IF G THEN NENT F:
G000 GOGUE GE1GQ: FOR F = 1 TO 1ES: GGUE GGEN:
    IF G THEH GOGUE GE11E: HENT F:
```



```
G0]G LET i = Q: IF T & % THEH FOE | = 1 TDT
: IF WEij & % THEH HENT I:.I=0
EOGG FETLIFH
```



```
HT=T + 1:UTTT = U
G1gE FETIFH
G11E GOElE GEOTG: IF J = E THEN FETLIFH
```



```
O" FEETUFN
01:S@ FOFI = A TOE + 1 GTEF - 1:%= IHT M, %
109:Y = H-10 +% + 4B: IF H = E THEHY Y = 30
G140 FOHE IS'Y:4 = %: HENT I: IF W = E THEH FETU
FH
```



```
G160 LET F = EO49:M = LH - IH
G17E LET H = F:M = M + IH
G1BG LET F = FEEK {Hi + FEEK {F + 1! :% ESE:L =
    FEEK IA + E! + FEEK IA + S! ESG:H=A + BGG=
    L&EE4
01190 FEETIFW
G000 LET S = 0
日E10 LET U = E:H = A + 1:E = H:C = FEEK IHi: IF
```



```
Q
```



```
    FHIC < - * S GOTO 6EEOM
GEOO LET A=A + 1:E = FEEK IF! - 4B: IFE= -
    16 coTO ECEGO
```



```
GOTO E6EOE
GEE0 LET S = 44:A = A - 1: FETUFN
GEGQ TEL GGENG,GEOT
GWEOE EHI!
```

 Listing 1
]

APPLE II Applesoft Version of Jim Butterfield's Resequence program.
CLASSIFIED INDEX FOR ISSUES 7 TO 12

[^2] a Joystick with the PET
Alan K. Christensen Inside PET BASIC Jim Butterfield
 How Goes Your ROM High Resolution Plotting for the PET "Thanks for the Memories" A PET Machine salol KIowa əbenbue 7 Harvey B. Herman

The Ultimate PET Renumber

A PET Hex Dump Program

An AIM 65 User's Notes
Super HI-LO for the SYM-1
Super Hahn Gieryic A 100 uS 16 Channel Analog to Digital Converter for 65XX Microcomputer Systems
J. C. Williams Inside the KIM TTY Service
$7: 37$
$7: 39$
$7: 45$
$7: 49$
$8: 29$
$8: 35$
$9: 14$
$9: 17$
$10: 31$
$11: 25$
$9: 35$
$9: 26$
$9: 39$
$10: 5$
$10: 25$
$10: 43$
$11: 12$
$11: 19$
$11: 31$
$11: 34$
7 Gary L. Tater
ASK the Doctor
Robert M. Trip
Part I
Part I - An EPROM Programmer
Part III - Bits and Bytes
Part IV - Good News/Bad News
Expand Your 6502 -Based TIM Monitor
Russell Rittimann
Life for the KIM-l and an Xitex Video Board
Theodore E. Bridge A Simple 24 Hour Clock for the AIM 65 A Simple 24 Hour Clock for the AIM 65
Marvin L. De Jong
Using Tiny BASIC to Debug Machine Using Tiny BASIC to Debug Machine
Language Programs Jim Zuber
6502 Graphics Routine
Two Short IIM Programs
IM-l as a Digital Voltmeter
Joseph L. Powlette \& Charles T. Wright Cassette Tape Controller
A Digital Clock Program for the SYM-1 KIMBASE Dr. Barry Tepperman Joseph L. Powlette \& Donald C. Jeffery SYM-1 Tape Directory John Gieryic Jim Green Corrected KIM Format Loader for SYM-1
Nicholas 3 . Vrtis EKIM or MAXI-KIM Andrew V. W. Sensicle SYM-1 6522-based Timer
John Gieryic The TVT-6: A User's Report
Edward Chalfin

$$
\begin{aligned}
& \text { Continuous Motion Graphics or How to Fake } \\
& \text { a Joystick with the PET }
\end{aligned}
$$

$$
\begin{aligned}
& 12: 5 \\
& 12: 17 \\
& 12: 25 \\
& 12: 39
\end{aligned}
$$

single board computers

C/BI

THE 6500 BASED SINGLE BOARD COMPUTER YOU HAVE BEEN LOOKING FOR

An industrial quality 6500 based single board computer produced by the company known for quality 6500 hardware and software. CSB 1 includes a 6502 processor, four ROM/EPROM sockets, 2K bytes RAM(2114), two PIA(6520) and one VIA(6522) chips. All addresses are switch selectable and a single +5 volt power supply is needed. Board size is 6 by 9.75
inches. The gold plated edge connector adheres to the SYSTEM 65 bus standard. Single quantity price is $\$ 595$ with substantial quantity discounts available. Other CSB board products are available or in design. Call us today for further information on our CSB family or any of our other 6500 support products.

Speakeasy

 SoftwareFINANCIAL ANALYSIS SPORTSTRIVIA

Now available at over 1,000 stores worldwide!

[^0]: Name: Disk Catalog Program
 System: Apple II
 Memory: $\mathbf{3 2}$ K minimum
 Language: Integer Basic and Machine Language
 Hardware: Apple II, DISK II
 Description: This program consists of two modules. The first, DCATPRO, is a general purpose data base catalog program for books, records, tapes, programs on diskette, etc. Features include 40 col. records, 5 fields (2 with adjustable length), and super fast machine language sort. The second, GENCPINP, automatically processes any set of Apple II diskettes and generates a data base for DCATPRO by reading the D\$CATALOG information for each diskettes. Then you know what you have and where it is, all without having to type in a lot of data.

 ## Copies: Over 100 sold

 Price: $\mathbf{\$ 1 0 . 0 0}$ postpaid
 Includes: Programs on cassette and 5 pages of documentation
 Arthur: George W. Lee
 Available from:
 George W. Lee
 18003 S. Christina Ave
 Cerritos, California 90701

[^1]: Who regularly publishes more info on other 6502 based systems, products and Niolan eran
 कั17Rdmos อл1789as COMBINEID?

 information. Now published monthly $\$ 12.00$
 per year in USA. Now you can get all of MICRO by buying
 "The BEST of MICRO Volume "The BEST of MICRO Volume (includes shipping) and starting your
 (7.00
 subseription with issuc t?

[^2]: $7: 5$
 $7: 12$
 $7: 31$
 $7: 43$
 $8: 11$
 $8: 31$
 $8: 41$
 $9: 9$
 $9: 19$
 $9: 32$
 $10: 9$
 $10: 17$
 $11: 5$
 $11:$
 $7:$
 $12:$
 12 APPLE

